Название: Наша математическая вселенная. В поисках фундаментальной природы реальности
Автор: Макс Тегмарк
Издательство: Corpus (АСТ)
Жанр: Математика
Серия: Элементы
isbn: 978-5-17-085475-2
isbn:
Рис. 2.7. Если нарисовать треугольники на этих поверхностях, сумма их углов окажется больше 180° (слева), 180° (посередине) и меньше 180° (справа). Эйнштейн считал, что в нашем трехмерном физическом пространстве для треугольников возможны все эти варианты.
Вероятно, математическое открытие неевклидовых пространств полтора столетия назад казалось большинству людей не более чем абстракцией, не имеющей практического отношения к нашему физическому миру. Затем Эйнштейн выдвинул общую теорию относительности, которая, по сути, утверждала, что мы – муравьи. Теория Эйнштейна позволяет нашему трехмерному пространству быть искривленным без всякого скрытого четвертого измерения, в котором оно искривлялось бы. Так что на вопрос, в пространстве какого типа мы живем, нельзя ответить, исходя из одной логики, как надеялись сторонники Евклида. Решить эту задачу можно, лишь выполнив измерения, например построив в космосе огромный треугольник (скажем, из лучей света) и проверив, равна ли сумма его углов 180°. В гл. 4 я расскажу, как мы с коллегами развлекались, проделывая это. Ответ оказался близок к 180° для треугольников размером с Вселенную, но значительно превосходящим 180°, если большую часть треугольника занимает нейтронная звезда или черная дыра. Так что форма нашего физического пространства сложнее, чем в трех примерах на рис. 2.7.
Вернемся к детскому вопросу о конечности пространства. Мы видим, что теория Эйнштейна позволяет пространству быть конечным далеко не таким глупым способом, как на рис. 2.6: оно может быть конечным за счет искривленности. Например, если наше трехмерное пространство искривлено подобно поверхности четырехмерной гиперсферы, то, будь у нас возможность достаточно далеко уйти по прямой линии, мы в конце концов вернулись бы домой с противоположной стороны. Мы не упали бы с края трехмерного пространства, поскольку у него нет края, как нет края и у сферы, по которой ползет муравей (рис. 2.7).
В действительности, Эйнштейн позволяет нашему трехмерному пространству быть конечным, даже если оно не искривлено. Цилиндр на рис. 2.7 в математическом смысле плоский: если нарисовать треугольник на бумажном цилиндре, сумма его углов составит 180°. Чтобы убедиться в этом, вырежьте из цилиндра треугольник: он ровно СКАЧАТЬ