Название: Золотой билет. P, NP и границы возможного
Автор: Лэнс Фортноу
Издательство: Лаборатория знаний
Жанр: Компьютеры: прочее
isbn: 978-5-00101-424-9
isbn:
7. Теория Янга–Миллса.
Гипотезу Пуанкаре в 2003 году доказал Григорий Перельман, однако от вознаграждения ученый отказался. Остальные шесть задач тысячелетия на момент написания книги по-прежнему остаются открытыми.
Решите проблему «P против NP» – и получите настоящий золотой билет, т. е. миллион долларов США!
Лучше всего, конечно, если вы установите равенство P и NP: тогда у вас будет алгоритм для поиска всех золотых билетов (т. е. решения всех остальных задач из списка). Докажете, что P = NP, – получите шесть миллионов за решение шести задач тысячелетия. Впрочем, доказать как равенство, так и неравенство классов будет очень и очень непросто; если вам нужны шесть миллионов, вы скорее выиграете их в лотерею.
В поисках билета
Иногда найти билет все же удается. Предположим, мне нужно поехать из Чикаго в Нью-Йорк на машине. Не долго думая, я забиваю адрес в навигатор, который уже через минуту-другую показывает оптимальный маршрут, и жму на газ. Подробная карта США со всеми городами и улицами занимает миллионы байт; возможные маршруты исчисляются гораздо более крупными цифрами. Сколько маршрутов можно проложить из Чикаго в Нью-Йорк? Грубейший подсчет даст нам свыше вигинтиллиона (единица и 63 нуля) вариантов, и запрет движения по встречке на односторонних улицах мало что изменит. У навигатора просто нет времени на такое количество проверок; как же он умудряется найти самый быстрый маршрут?
На самом деле маршруты обладают одной интересной особенностью. Добавим в программу промежуточный пункт назначения – скажем, Питтсбург. Кратчайший маршрут из Чикаго в Нью-Йорк через Питтсбург – это сумма кратчайших маршрутов из Чикаго в Питтсбург и из Питтсбурга в Нью-Йорк. Без заезда в Питтсбург до Нью-Йорка можно добраться и быстрее, однако при наличии промежуточной точки наилучшим решением будет склеить два кратчайших маршрута.
Именно так и сужают круг поиска навигационные программы. Десять тысяч или даже сто тысяч вариантов – это уже не вигинтиллион; современный процессор проверит их без труда.
Поиск кратчайшего пути не охватывает все аспекты проблемы равенства P и NP. Задача коммивояжера доказывает, что при наличии огромного числа вариантов совсем не обязательно перебирать их все; главный вопрос, однако, заключается в том, всегда ли можно обойтись без такого перебора.
Долгая дорога
Эта книга расскажет вам захватывающую историю о P и NP. Что это за классы? Какая между ними разница? Что такое NP-полные, или самые трудные, поисковые задачи? Как они связаны с проблемой P и NP?
Для наглядности приведу один маленький пример. Сколько человек входит в максимальную клику на Facebook, т. е. в наибольшую по численности группу, в которой все дружны между собой? Может, сотня? А может быть, тысяча? Даже при наличии доступа ко всем необходимым данным ответить на этот вопрос будет крайне непросто; искать максимальную клику не легче, чем СКАЧАТЬ