Название: Мир 2.0: Переход бизнеса к Искусственному Интеллекту
Автор: Олег Лебедев
Издательство: Автор
isbn:
isbn:
2.2. ИИ в здравоохранении: диагностика, лечение и управление
Здравоохранение – ещё одна сфера, где ИИ оказывает революционное влияние. От диагностики до разработки новых методов лечения, искусственный интеллект помогает медицинским специалистам работать быстрее и точнее, улучшая качество обслуживания пациентов и снижая затраты.
Примеры использования ИИ в здравоохранении:
Диагностика заболеваний: ИИ активно используется для анализа медицинских изображений (рентгеновские снимки, МРТ, КТ), а также для предсказания заболеваний на основе анализа данных пациента. Системы глубокого обучения могут выявлять патологические изменения, которые могут быть упущены человеческим глазом, что делает диагностику более точной.
Пример: Компания DeepMind (принадлежит Google) разработала систему, которая анализирует результаты офтальмологических исследований и способна точно диагностировать заболевания глаз, такие как диабетическая ретинопатия и глаукома, на ранних стадиях, что помогает предотвратить потерю зрения.
Персонализированное лечение: ИИ помогает разработать индивидуальные планы лечения на основе данных о пациенте, его генетике и ответах на предыдущие терапии. Это позволяет выбирать наилучшие методы лечения для каждого пациента, повышая их эффективность и снижая побочные эффекты.
Пример: Компания IBM Watson Health разрабатывает системы, которые помогают врачам выбирать наиболее подходящее лечение для онкологических больных, анализируя данные о генетических мутациях и реакции на предыдущие курсы терапии.
Управление медицинскими записями: ИИ также используется для автоматизации обработки и анализа медицинских записей, что позволяет снизить нагрузку на медицинский персонал и улучшить качество обслуживания.
Пример: Врачебные практики и больницы используют ИИ для автоматической обработки и сортировки электронных медицинских карт, что помогает быстро находить важную информацию и ускоряет процесс постановки диагноза.
2.3. ИИ в логистике: оптимизация цепочек поставок и автономные системы
В логистике ИИ используется для оптимизации процессов доставки, управления складскими запасами и улучшения планирования маршрутов. Эти технологии позволяют компаниям значительно сокращать расходы, улучшать скорость доставки и повышать точность выполнения заказов.
Примеры использования ИИ в логистике:
Оптимизация цепочек поставок: ИИ помогает предсказать потребности в ресурсах, минимизировать запасы и снизить затраты на хранение. Алгоритмы ИИ могут анализировать данные о продажах, СКАЧАТЬ