Название: Midjourney. Полное руководство
Автор: Александр Александрович Костин
Издательство: Автор
isbn:
isbn:
Midjourney использует генеративно-состязательные сети (GAN, Generative Adversarial Networks), которые состоят из двух частей: генератора и дискриминатора. Генератор создает изображения, в то время как дискриминатор оценивает, насколько эти изображения соответствуют реальным примерам. Эти две сети соревнуются между собой: генератор стремится создавать всё более правдоподобные изображения, а дискриминатор учится их различать. Это взаимодействие улучшает результаты, и в конечном итоге генератор создает настолько реалистичные изображения, что они становятся неотличимыми от настоящих.
Процесс обучения генеративной нейросети включает несколько этапов: 1. Сбор данных: Сначала собирается огромный массив изображений, которые затем используются для обучения. Это могут быть фотографии, рисунки, иллюстрации – любая визуальная информация, доступная для анализа. 2. Анализ данных: Нейросеть анализирует изображения, выявляя общие черты, такие как формы, цветовые схемы, текстуры и композиционные особенности. Это помогает ей научиться различать разные типы объектов и стили. 3. Обучение на основе обратной связи: Генератор и дискриминатор постоянно учатся друг у друга. Генератор создает изображение, дискриминатор оценивает его качество, и на основе этой оценки генератор улучшает свои способности. Этот процесс повторяется множество раз, пока генератор не научится создавать правдоподобные изображения.
Благодаря этому процессу, Midjourney способен понимать и интерпретировать запросы, поступающие от пользователей, и создавать изображения, которые соответствуют их ожиданиям.
Использование больших датасетов для обучения модели
Одна из ключевых особенностей Midjourney – это использование больших датасетов для обучения модели. Нейросеть обучается на миллионах изображений, что позволяет ей обобщать информацию и создавать уникальные комбинации элементов. Большие датасеты обеспечивают разнообразие, которое позволяет нейросети охватывать широкий спектр визуальных стилей и тем.
Представьте себе, что датасет – это огромная библиотека изображений. В этой библиотеке могут быть фотографии природы, архитектуры, людей, животных, предметов искусства и многое другое. Нейросеть Midjourney “читает” эту библиотеку, запоминает, как выглядят разные объекты и стили, и на этой основе учится создавать что-то новое.
Для примера, если пользователь вводит запрос “замок в горах в стиле импрессионизм”, Midjourney обращается к информации, полученной из обучающего датасета. Она знает, как выглядят замки, как изображать горы и что представляет собой стиль импрессионизм. Затем нейросеть СКАЧАТЬ