Теория игр. Создать стратегию своей жизни. Александр Александрович Костин
Чтение книги онлайн.

Читать онлайн книгу Теория игр. Создать стратегию своей жизни - Александр Александрович Костин страница 3

СКАЧАТЬ получают в зависимости от выбранных стратегий. Выплаты могут быть как количественными (например, прибыль или убыток), так и качественными (например, удовлетворение или потеря репутации).

      Равновесие Нэша (Nash Equilibrium): Это состояние, при котором ни один из игроков не может улучшить свой результат, изменив свою стратегию в одностороннем порядке. Равновесие Нэша является одним из центральных понятий теории игр и служит основой для анализа стратегических решений.

      Игры с полной и неполной информацией (Games of Complete and Incomplete Information): В играх с полной информацией все игроки знают стратегии и выплаты друг друга, тогда как в играх с неполной информацией часть информации остаётся скрытой. Это различие существенно влияет на выбор стратегий и анализ равновесия.

      Симметричные и асимметричные игры (Symmetric and Asymmetric Games): В симметричных играх все игроки имеют одинаковые стратегии и выплаты, тогда как в асимметричных играх стратегии и выплаты различаются для разных игроков.

      Нулевые и ненулевые игры (Zero-Sum and Non-Zero-Sum Games): В нулевых играх сумма выигрышей и проигрышей всех игроков равна нулю, что означает, что выигрыш одного игрока обязательно означает проигрыш другого. В ненулевых играх возможны ситуации, когда все игроки могут выиграть или проиграть одновременно.

      Кооперативные и некооперативные игры (Cooperative and Non-Cooperative Games): В кооперативных играх игроки могут заключать соглашения и координировать свои действия для достижения совместных целей. В некооперативных играх каждый игрок действует независимо, стремясь к максимизации своей собственной выгоды.

      Доминантная стратегия (Dominant Strategy): Это стратегия, которая приносит игроку лучший результат независимо от того, какие стратегии выбирают другие игроки. Если у игрока есть доминантная стратегия, он всегда будет её выбирать.

      Парадокс (Paradox): В теории игр парадоксом называют ситуацию, когда рациональное поведение приводит к неожиданным или нежелательным результатам. Примером такого парадокса является дилемма заключённого, где оба участника, действуя рационально, принимают решение, которое в итоге хуже для обоих.

      Эволюционная стабильность (Evolutionarily Stable Strategy): Это стратегия, которая устойчива перед возможными мутациями или изменениями в поведении других игроков. Она используется в биологии для объяснения устойчивых поведенческих паттернов в популяциях.

      Биматрица (Bimatrix): Это матрица выплат для игр с двумя игроками, где каждая клетка матрицы содержит пару выплат для каждого из игроков, соответствующую их выбранным стратегиям.

      Статическая и динамическая игры (Static and Dynamic Games): В статических играх все игроки принимают решения одновременно, не зная выборов других участников. В динамических играх решения принимаются последовательно, и каждый игрок знает предыдущие ходы.

      Понимание этих терминов и концепций является фундаментальным для освоения теории игр. Они позволяют анализировать и моделировать различные ситуации взаимодействия, предугадывать действия других участников СКАЧАТЬ