Название: Трансформация фотонов света в тахионы
Автор: Валерий Жиглов
Издательство: Автор
isbn:
isbn:
* Неабелевы группы: Уравнения Янга-Миллса основаны на идее неабелевых групп симметрии, что отличается от стандартных уравнений для скалярных и спинорных полей.
* Взаимодействие: Уравнения Янга-Миллса описывают взаимодействие между векторными полями, в частности, сильное взаимодействие между кварками через глюоны и слабое взаимодействие между лептонами и кварками через W- и Z-бозоны.
Математическое описание:
Уравнения Янга-Миллса представляют собой набор уравнений, которые сложно представить в компактной форме. Они описывают взаимодействие между векторными полями с помощью констант связи и неабелевых групп симметрии.
Решение уравнений Янга-Миллса описывает распространение векторных волн в пространстве-времени с определенной скоростью, связанной с массой частицы. В случае безмассовых частиц, таких как фотон, скорость распространения соответствует скорости света.
1.1.3 Физический вакуум:
В квантовой теории поля (КТП) «пустое пространство» не является истинно пустым. Физический вакуум – это квантовое состояние с минимальной энергией, которое не является «пустым» в том смысле, что в нем постоянно происходят квантовые флуктуации.
Квантовые флуктуации: Это случайные, непрерывные изменения в квантовых полях, обусловленные их квантовой природой. В результате этих флуктуаций в вакууме появляются виртуальные частицы и античастицы.
Виртуальные частицы: Это кратковременно существующие частицы, которые не могут быть обнаружены прямо, но оказывают влияние на взаимодействие реальных частиц.
Основные характеристики физического вакуума:
* Минимальная энергия: Физический вакуум обладает наименьшей возможной энергией, он является «основным состоянием».
* Квантовые флуктуации: В вакууме постоянно возникают виртуальные частицы и античастицы, которые взаимодействуют друг с другом и с реальными частицами.
* Влияние на взаимодействие частиц: Флуктуации вакуума влияют на взаимодействие реальных частиц. Например, электрон, движущийся в вакууме, взаимодействует с виртуальными фотонами, которые могут изменять его движение.
Примеры проявления физического вакуума:
* Эффект Казимира: Две близко расположенные проводящие пластины притягиваются друг к другу, хотя между ними нет никаких материальных тел. Это объясняется изменением квантовых флуктуаций вакуума между пластинами.
* Распад частиц: Квантовые флуктуации могут приводить к распаду нестабильных частиц.
* Переход в другое состояние: Флуктуации вакуума могут вызвать переход частицы в другое квантовое состояние.
Физический вакуум является одним из ключевых понятий КТП, который имеет важные последствия для понимания поведения элементарных частиц и взаимодействий между ними.
Важно отметить: КТП является очень сложной теорией, и ее полное изложение выходит за рамки данной монографии. В этой главе мы представили СКАЧАТЬ