.
Чтение книги онлайн.

Читать онлайн книгу - страница 18

Название:

Автор:

Издательство:

Жанр:

Серия:

isbn:

isbn:

СКАЧАТЬ target="_blank" rel="nofollow" href="#n_46" type="note">[46] Если поток веществ[47] небольшой, то система придет в устойчивое состояние, в котором промежуточные вещества[48] будут производиться и потребляться таким образом, что их количество не станет подвергаться сильным флуктуациям. Система достигнет состояния равновесия. Однако в большинстве химических систем, как только мы усилим поток,[49] это равновесие окажется неустойчивым, а это означает, что устойчивое состояние системы будет заменено двумя или несколькими устойчивыми состояниями, отличными от исходного состояния равновесия.[50] Когда возникнут эти новые устойчивые состояния, системе нужно будет «выбирать» между ними. Это значит, что ей придется перейти к одному или другому, нарушив симметрию системы, и развить историю, отмеченную этими выборами. Если мы еще больше усилим поток входных соединений{В}, то эти новые устойчивые состояния станут неустойчивыми и возникнут дополнительные новые устойчивые состояния. Это увеличение количества устойчивых состояний может привести химические реакции к таким высокоорганизованным состояниям, как те, которые присущи молекулярным часам, являющимся химическими осцилляторами, соединениями, периодически меняющими тип с одного на другой. Но разве такая простая химическая система способна обрабатывать информацию?

      Теперь представим, что мы можем привести систему в одно из этих устойчивых состояний путем изменения концентрации поступающих веществ{В}. Такая система будет «выполнять вычисления», поскольку она станет генерировать выходы в зависимости от поступающих веществ. Это будет химический транзистор. В очень грубом приближении эта модель химической системы имитирует примитивный метаболизм. В еще более грубом приближении эта система представляет собой модель клетки, изменяющей тип с одного на другой. Типы клеток могут абстрактно рассматриваться в качестве динамических устойчивых состояний этих систем, как десятилетия назад предположил биолог и исследователь сложных систем Стюарт Кауффман.[51]

      Высокоинтерактивные неравновесные системы, будь то деревья, реагирующие на смену сезонов, или химические системы, обрабатывающие информацию о поступающих веществах, показывают, что материя способна производить вычисления. Эти системы говорят нам, что процесс вычисления, как и информация, предшествует появлению жизни. Химические изменения, кодируемые этими системами, преобразуют информацию, закодированную в химических соединениях, и, следовательно, они представляют собой фундаментальную форму вычислений. Жизнь существует благодаря способности материи производить вычисления.

      Наконец, нам следует объяснить, как все это соотносится с необратимостью времени. Ведь именно с этого началась данная глава. Для объяснения я снова буду использовать работу Пригожина, а в качестве примера предлагаю вам представить большую коробку, наполненную триллионами шариков для пинг-понга.[52]

      Представьте, СКАЧАТЬ



<p>47</p>

В

<p>48</p>

С

<p>49</p>

В

<p>50</p>

Технически это называется бифуркацией. Это явление имеет место в системах, в которых присутствуют нелинейности, обусловленные тем, что производство некоторых промежуточных соединений{С} или выходов{Х} требует, соответственно, комбинации входов{В} и промежуточных состояний{С}.

<p>51</p>

Это одна из центральных идей, описанных Стюартом Куффманом в книге «Происхождение порядка: самоорганизация и отбор в эволюции» (The Origins of Order: Self-Organization and Selection in Evolution, 1993) (New York: Oxford University Press, 1993), а также то, что подразумевается под его моделью случайных булевых сетей.

<p>52</p>

Более подробное объяснение вы можете найти в книгах Ильи Пригожина и Изабеллы Стенгерс, «Порядок из Хаоса»: (Прогресс, 1986) и «Конец определенности. Время, Хаос и Новые Законы Природы» (Регулярная и хаотическая динамика, 2001).