Сверточные нейросети. Джейд Картер
Чтение книги онлайн.

Читать онлайн книгу Сверточные нейросети - Джейд Картер страница 16

Название: Сверточные нейросети

Автор: Джейд Картер

Издательство: Автор

Жанр:

Серия:

isbn:

isbn:

СКАЧАТЬ полносвязных слоя с 512 нейронами каждый и функцией активации ReLU.

      – Выходной слой с 10 нейронами и функцией активации softmax для предсказания вероятностей классов.

      5. Компиляция модели: Мы компилируем модель, используя функцию потерь `categorical_crossentropy`, оптимизатор `adam` и метрику `accuracy`.

      6. Обучение модели: Мы обучаем модель на тренировочных данных с размером батча 128 и числом эпох 10, используя 20% данных для валидации.

      7. Оценка модели: Мы оцениваем модель на тестовых данных и выводим значения потерь и точности.

      Этот пример демонстрирует, как функция активации ReLU используется в полносвязных слоях нейронной сети для эффективного обучения модели на задаче классификации изображений.

      Sigmoid

      Функция активации Sigmoid была одной из первых функций, широко используемых в нейронных сетях, особенно в ранних моделях искусственных нейронных сетей. Sigmoid преобразует любое входное значение в диапазон от 0 до 1, что делает ее особенно полезной для задач, где требуется интерпретация вывода как вероятности. Именно по этой причине Sigmoid часто используется в выходных слоях нейронных сетей для задач бинарной классификации, где выходная величина должна представлять вероятность принадлежности к одному из двух классов.

      Одним из основных преимуществ Sigmoid является ее плавный градиент, что означает, что небольшие изменения входных значений приводят к небольшим изменениям в выходных значениях. Это позволяет нейронным сетям чувствительно реагировать на изменения входных данных и, в некоторой степени, помогает в стабильном обучении. Кроме того, функция Sigmoid является дифференцируемой, что важно для процесса обратного распространения ошибки, используемого для обучения нейронных сетей.

      Однако у функции Sigmoid есть и существенные недостатки. Один из самых значительных – это проблема затухающих градиентов. Когда входные значения становятся очень большими по модулю, производная Sigmoid становится близкой к нулю, что замедляет или останавливает процесс обновления весов во время обучения. Это приводит к медленной сходимости или даже к стагнации обучения, особенно в глубоких сетях. В результате нейронные сети, использующие Sigmoid, могут потребовать значительно больше времени для обучения или вообще не достигать хороших результатов.

      Еще одним недостатком Sigmoid является ее асимптотическое поведение: для очень больших положительных или отрицательных значений входа выход функции становится близким к 1 или 0 соответственно, но никогда не достигает этих значений. Это может привести к ситуации, когда нейроны находятся в насыщенной области, где они практически не обучаются. Это особенно проблематично для глубоких нейронных сетей, где многослойное применение Sigmoid может усугублять проблему затухающих градиентов.

      Несмотря на свои недостатки, функция активации Sigmoid все еще находит применение в современных нейронных сетях, особенно в тех случаях, когда требуется интерпретация выходных значений как вероятностей. Тем не менее, для большинства задач глубокого обучения предпочтение отдается другим функциям активации, таким как ReLU и его вариации, которые лучше справляются с проблемой затухающих градиентов и способствуют более быстрой сходимости моделей.

      Пример использования Sigmoid

      Рассмотрим пример использования функции активации Sigmoid СКАЧАТЬ