Уравнение Бога. В поисках теории всего. Митио Каку
Чтение книги онлайн.

Читать онлайн книгу Уравнение Бога. В поисках теории всего - Митио Каку страница 5

Название: Уравнение Бога. В поисках теории всего

Автор: Митио Каку

Издательство: Альпина Диджитал

Жанр:

Серия:

isbn: 9785001395713

isbn:

СКАЧАТЬ Солнца, радиус ее орбиты R остается постоянным. При движении Земли по орбите ее координаты X и Y непрерывно меняются, но R является инвариантным. Мы знаем, что, согласно теореме Пифагора, X2 + Y2 = R2. Так что уравнение Ньютона обладает симметрией в любом случае: и когда оно выражено через R (поскольку R – инвариантная величина), и когда оно выражено через X и Y (согласно теореме Пифагора)

      Уравнения Ньютона[6] сохраняют эту симметрию, то есть при движении Земли по орбите притяжение, существующее между Землей и Солнцем, остается неизменным. При смене системы отсчета законы остаются прежними. С какой бы стороны и под каким бы углом мы ни рассматривали задачу, правила будут неизменными и мы получим одни и те же результаты.

      Когда мы перейдем к обсуждению единой теории поля, концепция симметрии будет встречаться нам постоянно. Мы увидим, что симметрия – один из мощнейших инструментов объединения всех взаимодействий в природе.

Подтверждение законов Ньютона

      За прошедшие столетия было найдено немало подтверждений законов Ньютона, и они оказали громадное влияние как на науку, так и на общество. В XIX веке астрономы заметили в небесах странную аномалию. Положение планеты Уран заметно отклонялось от предсказаний, сделанных на основании законов Ньютона. Ее орбита была не идеальным эллипсом, а слегка искажалась. Получалось, что либо законы Ньютона здесь не работают, либо существует еще одна планета, пока не открытая учеными, которая своим притяжением видоизменяет орбиту Урана. Вера в законы Ньютона была столь велика, что физики, в том числе и Урбен Леверье, занялись вычислением предполагаемого положения загадочной планеты. В 1846 г. астрономы с первой попытки обнаружили ее в предсказанной точке с отклонением в пределах одного градуса и окрестили Нептуном. Это стало наглядным примером работы законов Ньютона и первым случаем в истории, когда чистая математика позволила предсказать существование крупного небесного тела.

      Как уже говорилось, всякий раз, когда ученым удавалось расшифровать принципы действия одной из четырех главных сил Вселенной, это приводило не только к разгадыванию тайн природы, но и к революционным сдвигам в обществе. Законы Ньютона дали ключ к пониманию загадок планет и комет, а также заложили основу механики, которая позволяет нам сегодня создавать небоскребы, двигатели, реактивные самолеты, поезда, мосты, подводные лодки и ракеты. Так, в XIX веке физики применили законы Ньютона к объяснению природы теплоты. В то время ученые полагали, что теплота представляет собой некую форму жидкости, которая растекается по веществу. Но исследования показали, что на самом деле теплота – это движение молекул, напоминающих постоянно соударяющиеся крохотные стальные шарики. Законы Ньютона позволили точно рассчитать, как именно два таких стальных шарика отскакивают друг от друга. Затем, просуммировав триллионы и триллионы молекул, можно вычислить точные параметры теплоты. (Например, когда газ в камере нагревается, он расширяется в соответствии с законами Ньютона, поскольку тепло увеличивает скорость СКАЧАТЬ



<p>6</p>

Поскольку «Начала» Ньютона изложены чисто геометрически, ясно, что он понимал мощь симметрии. Ясно также, что при расчете движения планет он интуитивно использовал ее. Однако, поскольку Ньютон не пользовался аналитической формой дифференциального и интегрального исчисления, в которой фигурировали бы символы типа X2 + Y2, в его рукописи симметрия не представлена аналитически в выражении через координаты X и Y.