Название: Компьютерное моделирование химических взаимодействий
Автор: Дмитрий Кремнёв
Издательство: Автор
isbn:
isbn:
Второй неотъемлемой частью является набор термодинамических характеристик веществ, как изначально входящих в исследуемую систему, так и способных образовываться в систему в результате их взаимодействия и изменения параметров состояния системы.
Базы данных термодинамических характеристик
Существует два фактора, влияющих на соответствие расчетных данных реальному составу равновесной системы. Один из них (метод расчета) мы уже рассмотрели. Другим являются исходные данные, участвующие в расчете – их полнота и точность [2, 3].
Каким бы точным ни был метод расчета – его результаты будут ошибочными, если ошибочны исходные данные, закладываемые в него.
В нашем случае исходными данными являются термодинамические характеристики всех возможных химических веществ, способных образоваться в системе, а именно:
• термодинамические константы стандартного состояния: ∆fH, ∆fG, S (любые две из них достаточны);
• термические константы фазовых переходов (при наличии переходов): Ttr, ∆H (или ∆S, т.к. ∆H = Ttr ∆Str);
• температурно-зависимые функции G(T) (при фиксированном, стандартном значении P = P0 = 1 бар).
Несмотря на кажущееся обилие представленной информации, данные нередко противоречивы, не согласованы, неполны или вовсе отсутствуют.
Выявление этих ошибок в данных и их устранение представляет собой самостоятельную многослойную и сложную проблему. Давайте сформулируем основные требования, которым должны удовлетворять соответствующие базы термодинамических данных.
Исходное требование – достаточная полнота базы по спектру содержащихся в ней веществ. При моделировании поведения системы (как и в случае применения экспериментальных методов исследования) неучет отдельных веществ, способных в ней образовываться, может приводить не только к неполному, но и к искаженному представлению о свойствах всей системы в целом. В то же время ошибочный учет соединений, которые при рассматриваемых условиях не могут образовываться в системе, не нарушает корректности модели.
Очевидно и другое условие полноты – по набору заданных термодинамических характеристик вещества базы, необходимых для корректного построения его термодинамического описания в рассматриваемом диапазоне значений параметров состояния.
Термодинамические характеристики веществ чаще всего определяют экспериментально по данным ряда сложных реакций. Это приводит к необходимости «внешнего» согласования данных всех веществ, входящих в базу данных.
Также согласованность должна быть и «внутренней» – энтальпии, энергии Гиббса и энтропии веществ всегда должны удовлетворять тождеству: ∆H = ∆G + T∆S для любой возможной реакции между ними.
И, наконец, еще одно ключевое требование – необходимая достоверность собственно термодинамических характеристик веществ базы. Она определяется качеством соответствующих СКАЧАТЬ