ChatGPT. Мастер подсказок, или Как создавать сильные промты для нейросети. Петр Панда
Чтение книги онлайн.

Читать онлайн книгу ChatGPT. Мастер подсказок, или Как создавать сильные промты для нейросети - Петр Панда страница 2

СКАЧАТЬ в который входит и обучение моделей новым закономерностям, и расширение нейронных связей за счет увеличения программных мощностей, и колоссальная обратная связь с пользователями.

      Чем больше мы общаемся с ChatGPT и чем больше реагируем, давая модели обратную связь, тем больше информации она получает и тем быстрее учится. Возникает тот самый эффект снежного кома.

      «Выходит, нейросеть действительно умнеет и становится похожей на человека?» – спросите вы.

      Честно – не знаем. Мы изучили массу докладов и лекций как ведущих ученых, IT-специалистов и разработчиков ИИ, так и нейропсихологов, нейрофизиологов и даже социологов. Среди экспертов нет единого мнения, поэтому вопрос остается открытым.

      Мы приведем парочку фактов, а вы поразмышляйте и попробуйте сами сделать выводы.

      Факт первый. Мы имеем дело уже не с программой, а с чем-то обладающим основами логики и анализа. И дальше навыки ИИ будут только расти. Все это видно по уже существующему прогрессу.

      Факт второй. В техническом смысле нейросеть и не должна ничего «понимать» как человек. То есть ей для этого не нужны какие-то личностные или эмоциональные черты.

      Почему? Потому что при глубоком машинном обучении сеть и не должна «очеловечиваться», она лишь ищет закономерности, закрепляет успешно подтвержденные и тем самым изучает, как работает человеческий язык. Для выполнения своих задач ей этого хватает.

      Предполагается, что она лишь изучает вероятности и старается делать максимально «очеловеченный» вывод на основе наших данных. Например, что в такой-то связке слов и смыслов стоит употребить такие-то слова и смыслы и это даст лучшие результаты. Когда такое подтверждается много-много раз, сеть закрепляет это для себя как факт и делает частью стратегии.

      Чтобы понять еще лучше, возьмем простой пример.

      Есть некий Сергей Сергеевич, преподаватель истории в вузе. Раньше, рассказывая о временах Ивана Грозного (о которых он знает очень много), Сергей Сергеевич начинал издалека: давал предпосылки, углублялся во второстепенное, долго подводил к сути и т. д.

      Со временем он заметил, что такая стратегия не работает. Пока он «раскачивал тему», большинство студентов теряли интерес. Да, кое-кто слушал, но 95 % – зевали.

      Тогда Сергей Сергеевич начал корректировать свои лекции. Он отмечал, какой материал студенты понимают, а какой – не очень, к чему они быстро проявляют интерес, а где начинают смотреть на часы. И вот так, шажками, он создал конструкцию лекции, которая и по объему, и по уровню знаний была интересна большинству.

      И теперь, когда приходит время лекций об Иване Грозном, Сергей Сергеевич читает их в рамках этой конструкции. Она обкатана. Она работает и дает лучший результат.

      Примерно то же самое происходит и с GPT, только таких Иванов Грозных у моделей миллиарды, и закономерности постоянно обновляются, оптимизируются, шлифуются.

      А теперь вопрос: в разрезе повышения качества лекций так ли нам важно, СКАЧАТЬ