Название: Искусство большего. Как математика создала цивилизацию
Автор: Майкл Брукс
Издательство: Издательство АСТ
Серия: Элементы 2.0
isbn: 978-5-17-148081-3
isbn:
20
Если вы сочувствуете Леонардо, в этом нет ничего удивительного. Разумеется, можно просто принять, что при делении на число меньше единицы частное оказывается больше делимого. Не помешает, впрочем, разобраться в этом на примере. Допустим, мы делим 10 шоколадок между 5 хоккейными командами. Каждая команда получает по 2 шоколадки. Теперь допустим, что мы делим шоколадки между 2 командами. В таком случае каждая команда получает по 5 шоколадок. Чем меньше оказывается делитель, тем больше становится частное. Так продолжается, пока делитель не достигнет 1. Рассмотрим числа меньше 1. Допустим, мы делим 10 шоколадок между 1/3 команды. Треть хоккейной команды – это 2 человека. Следовательно, 10 шоколадок делится между 2 игроками, то есть каждый игрок получает по 5 шоколадок. Но это равнозначно тому, как если бы вся команда получила 5 × 6 = 30 шоколадок. Итак, при делении 10 на 1/3 получается 30.
21
McNamara J., Shaughnessy M. M. Student errors: what can they tell us about what students DO Understand? Math Solutions, 2011.
22
Ответ на первый вопрос: 2/7, 1/2, 5/9. Ответ на второй вопрос: 2. Прийти к ним можно либо путем аппроксимации (и 12/13, и 7/8 близки к 1, поэтому их сумма близка к 2), либо путем приведения дробей к общему знаменателю. Превратим 12/13 в 96/104, умножив числитель и знаменатель на 8. Затем превратим 7/8 в 91/104, умножив числитель и знаменатель на 13. Сложим числители. 96 + 91 = 187, а значит, в сумме дроби дают 187/104. Это приблизительно 1,8, что ближе всего к 2.
23
Последовательность Фибоначчи начинается с 0 и 1, а каждое следующее число в ней получается путем сложения двух предыдущих. Первые 12 чисел таковы: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и 89.
24
Pascal B. Pensées, www.gutenberg.org/files/18269/18269-h/18269-h.htm. Перевод Ю. Гинзбург.
25
Wallis J. A Treatise of Algebra, Both Historical and Practical. Philosophical Transactions of the Royal Society of London. 15, no. 173 (1685): 1095–1106.
26
Seife C. Zero: The Biography of a Dangerous Idea. New York: Viking, 2000.
27
Перевод цитируется по изданию: Мухаммад ибн Муса ал-Хорезми. Математические трактаты. Ташкент: Издательство “Фан” Узбекской ССР, 1983.
28
Kaplan R. The Nothing That Is: a natural history of zero. Oxford: Oxford University Press, 2000.
29
Physics by Aristotle, http://classics.mit.edu/Aristotle/physics.html.
30
Weng J. et al. The effects of long-term abacus training on topological properties of brain functional networks. Scientific Reports. 7, no. 1 (2017): 8862.
31
Goldthwaite R. The practice and culture of accounting in Renaissance Florence. Enterprise & Society. 16, no. 3 (2015): 611–47.
32
Gleeson-White J. Double Entry: how the merchants of Venice created modern finance. New York: W. W. Norton & Co, 2012.
33
Schemmen M. The Rules of Double-Entry Bookkeeping (a Translation of Particularis de Computis et Scripturis). IICPA Publications, 1494. “Сумма” Пачоли цитируется в переводе Э. Вальденберга.