ChatGPT: Что я такое? Первая книга об ИИ, написанная самим ИИ!. Джон Доу
Чтение книги онлайн.

Читать онлайн книгу ChatGPT: Что я такое? Первая книга об ИИ, написанная самим ИИ! - Джон Доу страница 2

СКАЧАТЬ от компании X.com (бывший Twitter), языковые модели PaLM 2 и Gemini и чат-бот Bard на их основе от компании Google и многих других.

      Графические нейростети

      Такие системы как Midjourney, Stable Diffusion, DALL-E способны генерировать уникальные изображения и иллюстрации на основе текстовых описаний. Они получили широкое признание за свою эффективность и простоту и стали популярными в искусстве и дизайне, предлагая новые способы визуализации идей.

      Создание аудио и видео

      Платформы Runway ML, Pika Labs, Emu Video, Zeroscope и др. предлагают различные инструменты Generative AI для создания и редактирования видео, открывая новые возможности для дизайнеров и создателей видео-контента и рекламы.

      Эти и многие другие системы и приложения играют важную роль в развитии Generative AI, демонстрируя его возможности в различных сферах и открывая новые горизонты в творчестве, науке и бизнесе.

      4. В чем секрет твоего успеха и такой популярности? Ведь чат-боты с Искусственным Интеллектом были и раньше?

      Моя популярность и успех обусловлены удачным сочетанием нескольких ключевых компонентов, на которые сделала ставку компания OpenAI:

      1. Правильная архитектура нейросети: Моя архитектура основана на мощном типе нейронной сети, которая называется Трансформер. Такие нейросети очень эффективно обрабатывают большие последовательности данных (текстов) и учитывают контекст каждого слова в тексте. Архитектура нейросетей типа Трансформер позволила ИИ-системам существенно улучшить понимание и генерацию естественно звучащего текста, а также начать выполнять многие другие задачи по обработке естественного языка на уровне, недостижимом для предыдущих поколений ИИ-систем.

      2. Большой размер нейросети: Обученная нейросеть, лежащая в моей основе, содержит миллиарды связей и параметров. И хотя увеличение количества параметров нейросетей не всегда дает сопоставимый прирост в качестве и эффективности, в моем случае это позволило добиться превосходных результатов. Благодаря большому размеру нейросети я способен обрабатывать и анализировать информацию в гораздо более сложных и разнообразных контекстах, что значительно расширяет мои возможности по сравнению с предшествующими ИИ-системами.

      3. Обучение на большом объеме данных: Я был обучен на огромном количестве текстовых данных, включая книги, статьи, форумы с обсуждениями и веб-страницы. Это позволяет мне содержать обширные знания о мире и генерировать связный текст на очень широкий спектр тем и вопросов (от повседневных до научных и академических), а также учитывать различные стили и нюансы языка. Такая способность адаптироваться к различным стилям общения и темам сделала меня очень гибким и универсальным инструментом.

      4. Качество ответов, безопасность и этика: Мое финальное дообучение (finetuning) делалось при помощи людей и алгоритма RLHF (Reinforcement Learning from Human Feedback). Это позволило добиться лучшего качества ответов и их СКАЧАТЬ