Название: ChatGPT: Что я такое? Первая книга об ИИ, написанная самим ИИ!
Автор: Джон Доу
Издательство: Издательские решения
isbn: 9785006230965
isbn:
3. Предварительная обработка данных: Этот этап включает в себя очистку данных (удаление ошибок, сильных отклонений, пропущенных значений), преобразование данных (например, преобразование текста в числовые значения или приведение разнородных данных к единому формату) и нормализацию данных (например, масштабирование значений на определенный диапазон).
4. Выделение признаков: Признаки – это характеристики или атрибуты, которые машина использует для обучения. Например, если вы создаете модель для классификации изображений кошек и собак, признаками могут быть размеры животных, цвета, текстуры и формы, присутствующие на изображении. Этап выделения признаков включает в себя выбор и создание эффективных признаков, которые помогут модели делать более точные прогнозы.
5. Выбор модели: В зависимости от типа проблемы и задачи (регрессия, классификация, кластеризация и т.д.) и специфики данных, вы выбираете тип (вид) Машинного обучения (Supervised, Unsupervised, Semi-supervised, Self-supervised или Reinforcement Learning) и конкретную подходящую Модель машинного обучения этого вида.
6. Обучение модели: На этом этапе алгоритм машинного обучения сам «обучает» модель, используя ваши данные и целевые значения. Это происходит путем настройки параметров модели таким образом, чтобы минимизировать ошибку между прогнозируемыми моделью результатами и реальными значениями результатов (взятыми из обучающих примеров).
7. Оценка модели: После обучения модели вам нужно оценить ее качество и производительность. Это обычно делается с помощью сравнения ответов модели с отложенным набором данных (тестовым набором), который не использовался при обучении. Метрики оценки могут включать точность, полноту и другие показатели работы модели. Важно получить модель, которая не будет переобученной, но и не будет недообученной – чтобы получать от нее потом хорошие результаты предсказаний
8. Тонкая настройка и оптимизация: После первоначального обучения и оценки модели вы можете оптимизировать и настраивать свою модель, изменяя параметры и используя различные техники, такие как кросс-валидация и регуляризация.
9. Развертывание модели (Деплой): После того, как модель была обучена, оценена и оптимизирована, она может быть «развернута» (на компьютерных системах и вычислительных мощностях) и использована для предсказаний на новых данных.
10. Процесс работы модели (Инференс): Обычно этот термин используют при работе с нейронными сетями. Инференсом называется непрерывная работа какой-либо нейронной сети на конечном устройстве. То есть, это процесс исполнения сети, когда она уже развернута и готова к проведению полезной работы. Для инференса используются процессоры общего назначения (CPU), графические процессоры (GPU) или специализированные процессоры для Машинного обучения и нейросетей (TPU).
Все эти шаги могут потребовать различных навыков и инструментов: знания основ математики, статистики, программирования, поддержки работы компьютерных систем, обработки и анализа данных и, конечно же, знания самого машинного обучения и предметной СКАЧАТЬ