Название: Редактируя человечество: Революция CRISPR и новая эра изменения генома
Автор: Кевин Дейвис
Издательство: Альпина Диджитал
isbn: 9785002231942
isbn:
После того как Cas9 разрезал ДНК, репаративные ферменты ДНК клетки «зашивают» разрыв. Эксперты удивляются тому, как успешно это работает[79]. Cas9 превосходит даже ранее разработанные технологии редактирования генов ZFN и TALEN[80]. «Они были созданы, чтобы работать с эукариотической ДНК, но тем не менее, по всей видимости, Cas9 превосходит их», – говорит Вуд.
Давайте сделаем паузу и отметим решающую роль, которую играет в этом процессе последовательность PAM: поиск коротких фрагментов PAM вместо распаковки и проверки практически всего генома значительно упрощает задачу для Cas9 по фиксации целевой последовательности. Наличие PAM также объясняет то, что Cas9 не разрезает случайным образом повторы в последовательности CRISPR бактериальной ДНК. Это связано с тем, что, когда последовательности ДНК изначально добавляются к участку CRISPR в геноме бактерий, последовательности PAM отсекаются. Генные инженеры не хотят ограничиваться природным набором последовательностей PAM, поэтому модифицируют исходные ферменты Cas9 и Cas других видов бактерий, чтобы расширить их предпочтения в распознавании короткой последовательности PAM.
Если у бактерий настолько эффективна система безопасности, было бы резонно задаться вопросом: почему вирусы не вымерли? Вирусы незаметно развили множество обходных механизмов – группу белков, которые способны нейтрализовать нуклеазы Cas, известные как белки анти-CRISPR. Вирусы и бактерии подобны хищникам и их жертвам, вовлеченным в бесконечную борьбу, которая продолжается сотни миллионов лет[81]. CRISPR обнаружен в 46 % бактериальных геномов и почти во всех геномах архей, но, что удивительно, совсем не встречается в геномах высших организмов. Хотя на сегодняшний день Cas9 чаще всего используется совместно с CRISPR, являясь предметом ожесточенных патентных споров, о которых я расскажу позже, этот фермент представляет собой лишь каплю в море разнообразных систем CRISPR, встречающихся в природе. Ученые прикладывают массу усилий, чтобы изучить биологическое разнообразие на Земле, открыть новые белки семейства Cas с новыми функциями и расширить набор инструментов CRISPR[82].
После того как исследователь СКАЧАТЬ
77
D. Lawson Jones et al., "Kinetics of dCas9 target search in Escherichia coli,"
78
Andrew Wood, phone interview, August 28, 2019.
79
Rodolphe Barrangou, "CRISPR-Cas: From Bacterial Adaptive Immunity to a Genome Editing Revolution," XBio, September 2019, https://explorebiology.org/summary/genetics/crispr-cas:-from-bacterial-adaptive-immunity-to-a-genome-editing-revolution
80
ZNF (zinc finger nuclease) – цинк-пальцевая нуклеаза; TALEN (transcription activator-like effector nuclease) – эффекторная нуклеаза, подобная активатору транскрипции (см. главу 8).
81
S. Hwang and K. L. Maxwell, "Meet the Anti-CRISPRs: Widespread Protein Inhibitors of CRISPR-Cas Systems,"
82
M. Adli, "The CRISPR tool kit for genome editing and beyond."