Автор: Cет Cтивенс-Давидовиц
Издательство: Эксмо
Серия: Библиотека ИТ. Главные книги о современных технологиях
isbn: 978-5-04-192172-9
isbn:
Как часто команде нужно исполнять бант? Значительно реже, чем сейчас, говорили сайберметристы. А как часто следует красть базы? Почти никогда. Сколько должны стоить игроки, приносящие много пробежек? Больше, чем думали команды. Кого следовало приобретать? Больше питчеров из университетских команд.
Работа Джеймса производила захватывающее впечатление не только на моего отца. Билли Бин, который начинал карьеру в качестве игрока, а впоследствии переквалифицировался в бейсбольного администратора, тоже был его горячим сторонником. И став генеральным директором клуба Oakland Athletics, он решил управлять им в соответствии с принципами сайберметрики.
Идея принесла выдающиеся результаты. В книге Moneyball приводится довольно известный факт: в Oakland Athletics платили очень скромные зарплаты, но при этом команда выходила в плей-офф в 2002 и 2003 годах[4]. С тех пор роль аналитики в бейсболе резко возросла. Клуб Tampa Bay Rays, о котором говорили, что он больше следует Moneyball, чем сама команда Oakland Athletics из Moneyball[5], вышел в World Series 2020, несмотря на третий с конца уровень зарплат в бейсболе.
Принципы Moneyball и лежащая в их основе здравая идея, что когнитивные искажения могут быть компенсированы данными, повлияли на многие учреждения и виды спорта. Команды NBA все больше используют аналитику, прослеживающую траекторию каждого броска[6]. В данных о 300 миллионах бросков были найдены значительные отклонения от оптимальной техники. Оказывается, что для среднего игрока NBA, выполняющего бросок в прыжке, вероятность пропустить бросок с недолетом вдвое выше, чем бросок с перелетом. А когда он выполняет бросок из угла, он скорее промахнется в сторону, противоположную щиту, потому что может опасаться попасть в него. Игроки воспользовались подобными данными, чтобы и корректировать когнитивные искажения, и одновременно делать больше бросков.
Фирмы Кремниевой долины в значительной степени опираются на принципы, изложенные в Moneyball. Google, где я в прошлом работал аналитиком данных, определенно верит в полезность данных при принятии важных решений. Была довольно известная история, когда оттуда уволился дизайнер, недовольный тем, что компания предпочитала данные, а не интуицию квалифицированных дизайнеров. Последней каплей для него стал эксперимент, в котором компания испытывала сорок один оттенок синего[7] для гиперссылок в Gmail, чтобы выяснить на практике, какой из них даст больше всего кликов. Возможно, дизайнер и был недоволен, но эксперимент принес Google 200 миллионов долларов дополнительного дохода в год[8]. Google ни разу не поколебался в своей вере в данные – и со временем превратился в компанию ценой в 1,8 триллиона долларов. Как сказал ее бывший исполнительный директор Эрик Шмидт: «В Бога мы верим. Все остальные должны предоставлять данные»[9].
Джеймс Симонс, математик мирового класса и основатель компании Renaissance Technologies, принес строгий анализ данных на Уолл-стрит. Он и его группа количественных аналитиков СКАЧАТЬ
4
Michael Lewis “Moneyball: The Art of Winning an Unfair Game” (New York: Norton, 2004).
5
Jared Diamond, “How to succeed in baseball without spending money”, Wall Street Journal, October 1, 2019.
6
Ben Dowsett, “How shot-tracking is changing the way basketball players fix their game”, FiveThirtyEight, August 16, 2021, https://fivethirtyeight.com/features/how-shot-tracking-is-changing-the-way-basketball-players-fix-their-game/.
7
Douglas Bowman, “Goodbye, Google”, https://stopdesign.com/archive/2009/03/20/goodbye-google.html, March 20, 2009.
8
Alex Horn, “Why Google has 200m reasons to put engineers over designers”, Guardian, February 5, 2014.
9
“Are we better off with the internet?” YouTube, uploaded by the Aspen Institute, July 1, 2012, https://www.youtube.com/watch?v=djVrLNaFvIo.