Языковые модели и мир будущего, или Путеводитель по ChatGPT. Руслан Акст
Чтение книги онлайн.

Читать онлайн книгу Языковые модели и мир будущего, или Путеводитель по ChatGPT - Руслан Акст страница 5

СКАЧАТЬ Если мы достигнем высокого уровня в этой области, то машины могут стать «осознанными» в определенном смысле.

      В нашем повседневном мире языковые модели уже активно используются. Например, когда вы пишете сообщение на своем смартфоне, и он предлагает вам следующее слово. Это и есть работа языковой модели.

      К примеру, вы пишете «На горизонте появился…", и модель может предложить «замок», «корабль» или «радуга» в качестве следующего слова.

      Как это может быть полезно для вас? Давайте рассмотрим простой пример. Предположим, вы владелец компании и хотите создать рекламный текст для нового продукта.

      С помощью языковой модели вы можете получить несколько вариантов текста в считанные секунды! Это экономит время и ресурсы.

      Архитектура языковой модели определяет, как модель обрабатывает и генерирует текст на основе предоставленных ей данных.

      В контексте машинного обучения и искусственного интеллекта архитектура является основой, на которой строится модель, и определяет её структуру, функционирование и способность к обучению.

      Рассмотрим основные компоненты:

      Слой Embedding: Этот слой преобразует слова или символы в числовые векторы. Эти векторы представляют собой плотные представления слов, которые модель может легко обрабатывать.

      Представьте, что у вас есть книга с картинками разных животных: кошка, собака, лев и так далее. Теперь, вместо того чтобы показывать всю картинку, вы хотите дать короткое числовое описание каждого животного.

      Слой Embedding делает что-то похожее, но с словами. Когда вы говорите ему слово «кошка», он может преобразовать его в набор чисел, например, [0.2, 0.5, 0.7].

      Этот набор чисел (или вектор) теперь представляет слово «кошка» для компьютера. Таким образом, вместо того чтобы работать с буквами и словами, модель работает с этими числовыми представлениями, что делает её обработку гораздо быстрее и эффективнее.

      Так, слово «собака» может быть [0.3, 0.6, 0.1], а «лев» – [0.9, 0.4, 0.8]. Каждое слово получает свой уникальный числовой «портрет», который помогает модели понимать и обрабатывать текст.

      Рекуррентные слои: Они используются для обработки последовательностей, таких как предложения или абзацы.

      Рекуррентные нейронные сети (RNN) и их вариации, такие как LSTM (Long Short-Term Memory) и GRU (Gated Recurrent Units), являются популярными выборами для этих слоев, так как они способны «помнить» информацию из предыдущих частей последовательности.

      Представьте, что вы читаете книгу и каждый раз, когда переворачиваете страницу, вы забываете, что произошло ранее. Было бы сложно понять историю, не так ли?

      Но в реальной жизни, когда вы читаете книгу, вы помните события предыдущих страниц и используете эту информацию для понимания текущей страницы.

      Рекуррентные нейронные сети (RNN) работают аналогичным образом. Когда они обрабатывают слова в предложении или абзаце, они «помнят» предыдущие слова и используют СКАЧАТЬ