При аналитическом способе задается некоторое выражение, позволяющее посредством подстановки в него элементов множества начала получать соответствующие элементы множества конца. Оба эти способа не могут быть непосредственно применены в интересующем нас случае по той простой причине, что психический образ не может быть извлечен из человеческого мозга и вообще не является непосредственно наблюдаемым объектом. Он присущ только конкретному человеку. Как подчеркивал С.Л.Рубинштейн, «если что-то дано человеку непосредственно, то никаким иным способом оно уже дано быть не может». Попытки преодолеть это препятствие делались посредством построения процедур отображения множества физических объектов и множества образов в некоторое третье множество – чаще всего множество действительных чисел, с последующим рассмотрением функций, заданных на декартовом квадрате множества действительных чисел. При этом указанные процедуры строятся так, чтобы обеспечить биекцию отображения F: f → f', где f ⊂ А x B, a f' ⊂ R × R. Приведем некоторые примеры функций, выступающих в качестве моделей психических явлений. Одной из наиболее известных моделей такого рода является закон Г.Фехнера, связывающий функциональной зависимостью физическую интенсивность стимула (воспринимаемого внешнего объекта) и субъективную интенсивность ощущения
где S – интенсивность стимульного воздействия, R – интенсивность ощущения или воспринимаемая интенсивность. При этом, конечно, на физическую интенсивность стимула как множества начала отображения накладываются ограничения. Это прежде всего пороговые ограничения, как при любом психофизическом отображении, но, кроме того, закон Г.Фехнера действует только в средних диапазонах интенсивности раздражителей (стимулов) и не действует в околопороговых областях. Таким образом, можно сказать, что данная функция представляет собой модель трансформации физической энергии в субъективное восприятие в обычных условиях (при средних интенсивностях стимулов). С.С.Стивенс разработал иную СКАЧАТЬ