Пиксель. История одной точки. Элви Рэй Смит
Чтение книги онлайн.

Читать онлайн книгу Пиксель. История одной точки - Элви Рэй Смит страница 22

Название: Пиксель. История одной точки

Автор: Элви Рэй Смит

Издательство: Individuum

Жанр:

Серия: Individuum

isbn: 978-5-6048295-0-9

isbn:

СКАЧАТЬ сцены по мере того, как вы перемещаетесь вправо по линии. В любом случае мы отметим в исходном фрагменте черными зарубками точки, расположенные на одинаковом расстоянии друг от друга, – отсчеты. Мы начнем приходить к пониманию, отталкиваясь от этого одномерного примера, а затем постепенно перейдем к двум измерениям, необходимым для полной визуальной сцены. Точно так же мы поступили с волнами Фурье в первой главе.

      Рис. 2.5

      Рисунок 2.6 – это то, что вы получите, если удалите все точки на гладкой кривой, кроме тех, что отмечены черными зарубками. Между ними у нас есть только прямая линия нулевой громкости или нулевого уровня яркости. Нетрудно представить, как будет выглядеть двумерная версия. Представьте доску с гвоздями, забитыми на равных расстояниях по горизонтали и вертикали. Их высота варьируется в зависимости от яркости соответствующей гладкой поверхности – визуальной сцены. Везде, кроме мест, где расположены гвозди, высота поверхности будет нулевой.

      Рисунок 2.5 – аналоговый, а рисунок 2.6 – цифровой. Вертикальные линии на втором называются отсчетами для аналоговой кривой – или выборкой. В случае доски с гвоздями для двумерной поверхности гвозди будут отсчетами соответствующей аналоговой поверхности. Замечательная теорема Котельникова гласит, что нам не нужна сама гладкая кривая для представления звука или сама гладкая поверхность для представления визуальной сцены. Нам нужны только отсчеты. Другими словами, на аналоговую бесконечность точек между отмеченными на первом рисунке черными зарубками можно не обращать внимания! Кажется, он говорит, что ничто может представлять нечто. Как такое возможно? Ответ кроется, конечно же, в слове «кажется».

      Вы можете вообразить, что, если просто сделать очень-очень много отсчетов и разместить их достаточно близко друг к другу, они станут аналоговой звуковой кривой. У многих людей есть такое же интуитивное представление, что пиксели – какими бы они ни были, – расположенные достаточно близко друг к другу, станут соответствующей визуальной сценой. Но такое предположение ошибочно. Вы не можете достичь достаточно близкого расположения. Невозможно заставить цифровую бесконечность достичь плотности аналоговой бесконечности. Нельзя сосчитать неисчислимое. Но Котельников, кажется, говорит, что можно. Тогда как же это сделать?

      Более того, его теорема гласит, что точки, показанные на втором рисунке, уже расположены достаточно близко друг к другу, то есть вы не получите ни преимуществ, ни дополнительной информации, взяв отсчеты, расположенные еще ближе. Вы все еще в недоумении? Я надеюсь на это, потому что сейчас я раскрою суть вопроса и продемонстрирую элегантность его идеи.

      Итак, с этими витающими в воздухе вопросами мы уже почти готовы подступиться к великой идее Котельникова. Но сначала вернемся к идее Фурье, поскольку теорема Котельникова СКАЧАТЬ