Функции активации применяются внутри каждого нейрона, чтобы вводить нелинейность в вычисления нейронной сети. Они помогают сети обучаться сложным нелинейным зависимостям в данных. Некоторые распространенные функции активации включают:
– Сигмоидная функция (Sigmoid):
Сигмоидная функция (Sigmoid) является одной из наиболее известных и широко используемых функций активации в нейронных сетях. Она имеет форму S-образной кривой и ограничивает выходное значение нейрона в диапазоне от 0 до 1. Математически сигмоидная функция определяется следующим образом:
σ(x) = 1 / (1 + exp(-x))
где x – входное значение нейрона, exp – функция экспоненты.
Одно из преимуществ сигмоидной функции заключается в том, что она обладает свойством сжатия значений в интервале (0, 1). Это делает ее полезной при работе с вероятностными оценками или в задачах, где требуется ограничение выходных значений в определенном диапазоне. Например, сигмоидная функция может использоваться для прогнозирования вероятности принадлежности к определенному классу в задачах классификации.
Однако, сигмоидная функция имеет некоторые недостатки, которые ограничивают ее применение в некоторых случаях. В частности, она страдает от проблемы затухающего градиента (vanishing gradient problem). При глубоких нейронных сетях, где градиенты передаются через множество слоев, градиенты, умноженные на производную сигмоидной функции, становятся очень маленькими. Это может привести к затуханию градиента и замедлению скорости обучения сети.
Из-за этой проблемы сигмоидная функция постепенно вышла из практического применения в глубоком обучении и была заменена на другие функции активации, такие как ReLU (Rectified Linear Unit) и его вариации. ReLU функция позволяет эффективнее обучать глубокие сети и предотвращает затухание градиента.
Тем не менее, сигмоидная функция все еще может использоваться в некоторых случаях, особенно в задачах, где требуется ограничение значений в интервале (0, 1) или когда требуется моделирование вероятностей. Также она может быть полезна в градиентных методах оптимизации, таких как оптимизация с использованием градиента, когда требуется сжатие значений в интервале (0, 1).
– Гиперболический тангенс (Tanh):
Гиперболический тангенс (Tanh) – это функция активации, которая также ограничивает выходное значение нейрона в определенном диапазоне. В случае гиперболического тангенса, диапазон составляет от -1 до 1. Математически гиперболический тангенс определяется следующим образом:
tanh(x) = (exp(x) – exp(-x)) / (exp(x) + exp(-x))
где x – входное значение нейрона, exp – функция экспоненты.
По своей форме, гиперболический тангенс очень похож на сигмоидную функцию, но смещен на ноль и масштабирован. Он имеет S-образную форму и обладает свойствами сжатия значений в диапазоне (-1, 1).
Гиперболический тангенс также страдает от проблемы затухающего градиента, аналогично сигмоидной функции. При глубоких СКАЧАТЬ