Теория игр. Как стать стратегом в своей жизни и научиться принимать лучшие для себя решения за 30 дней. Книга-тренинг. Джон Смит
Чтение книги онлайн.

Читать онлайн книгу Теория игр. Как стать стратегом в своей жизни и научиться принимать лучшие для себя решения за 30 дней. Книга-тренинг - Джон Смит страница 6

СКАЧАТЬ изучает стратегии и решения в конфликтных ситуациях. Важной концепцией в теории игр является равновесие Нэша, которое представляет собой состояние, при котором ни одному игроку не выгодно изменить свою стратегию при условии, что остальные игроки продолжают действовать так же.

      В некооперативных играх каждый игрок сталкивается с вызовом принятия решений, основанных на предположении о том, какие ходы будут сделаны другими игроками, и оценке своих вероятностей на успех. Такие игры могут быть источником напряжения и конкуренции, поскольку каждый игрок стремится достичь наилучшего возможного результата для себя.

      Оба этих типа игр предлагают уникальные вызовы и возможности для игроков. Важно понимать их особенности и уметь адаптироваться в зависимости от того, в какую игру вы играете.

      3.2 Игры с нулевой суммой против игр с ненулевой суммой

      В теории игр, игры классифицируются в зависимости от того, как распределяются выигрыши между игроками. Основное разделение здесь – это на игры с нулевой суммой и игры с ненулевой суммой. Разница между этими двумя типами игр заключается в том, как взаимосвязаны выигрыши участников.

      Игры с нулевой суммой

      В играх с нулевой суммой, выигрыш одного игрока равен потере другого. Это означает, что сумма всех выигрышей (или утилит) игроков в игре всегда равна нулю. Примером игры с нулевой суммой являются шахматы: если один игрок выигрывает, то другой, соответственно, проигрывает.

      В играх с нулевой суммой, структура выигрышей такова, что вся польза, которую получает один игрок, должна быть уравновешена потерями другого игрока. В таких играх общая "пирог" или общая ценность, которую игроки могут получить, фиксирована. Таким образом, любая выгода, полученная одним игроком, является прямым убытком для другого.

      Пример игры с нулевой суммой могут служить классические игры типа шахмат или покера. В шахматах, когда один игрок ставит мат другому, он выигрывает, а другой игрок проигрывает – нет никакого промежуточного исхода, где оба игрока могли бы одновременно выиграть или проиграть. Аналогично, в традиционной игре в покер, выигрыш одного игрока происходит за счет потерь других игроков.

      Важно отметить, что "нулевая сумма" не обязательно означает, что игра не имеет значения или что участники не получают никаких выгод. На самом деле, в контексте теории игр, "нулевая сумма" просто означает, что выигрыш одного игрока равен потере другого.

      Стоит отметить, что "нулевая сумма" не обязательно означает отсутствие стимулов для игроков. Например, в спортивных соревнованиях, несмотря на то что одна команда выигрывает за счет проигрыша другой, обе команды имеют стимулы для участия: зарабатывать очки, улучшать свои навыки, демонстрировать свои способности и так далее. Так что даже в играх с нулевой суммой участники могут получать своего рода выгоды.

      В теории игр, концепция игр СКАЧАТЬ