Нейросети начало. Джейд Картер
Чтение книги онлайн.

Читать онлайн книгу Нейросети начало - Джейд Картер страница 6

Название: Нейросети начало

Автор: Джейд Картер

Издательство: Автор

Жанр:

Серия:

isbn:

isbn:

СКАЧАТЬ style="font-size:15px;">      # Использование модели

      predictions = model.predict(new_data)

      Этот код создает сверточную нейронную сеть для распознавания эмоций на изображениях размером 48x48 пикселей.

      В первом слое используется свертка с 32 фильтрами размера 3x3 и функцией активации ReLU, которая принимает входные изображения размера 48x48x1. Затем следуют слои нормализации пакетов, максимальной пулинги с размером фильтра 2x2 и dropout, который помогает предотвратить переобучение.

      Далее добавлены два дополнительных сверточных слоя с увеличенным числом фильтров и аналогичными слоями нормализации и dropout. После этого следует слой сглаживания, который преобразует многомерный вход в одномерный вектор.

      Затем следуют два полносвязных слоя с функцией активации ReLU и функцией нормализации пакетов, а также слои dropout. Последний слой содержит 7 нейронов и использует функцию активации softmax для определения вероятности каждой из 7 эмоций.

      Для компиляции модели используется оптимизатор adam, функция потерь categorical_crossentropy и метрика accuracy. Модель обучается на тренировочных данных в течение 50 эпох с валидацией на проверочных данных.

      После обучения модели оценивается на тестовых данных и выводится точность предсказаний. Затем используется модель для предсказания эмоций на новых данных.

Итог по 1 главе.

      В этой главе мы рассмотрели основные концепции, которые лежат в основе нейросетей. Мы изучили, что такое нейрон, как он работает в нейросети, что такое веса и смещения, как нейрон принимает решения и как строится нейросеть. Мы также рассмотрели процесс обучения нейросети и то, как нейросеть корректирует свои веса и смещения, чтобы улучшить точность прогнозирования.

      Итак, можно сделать вывод, что нейросеть – это мощный инструмент в области искусственного интеллекта и машинного обучения, который используется во многих приложениях. Основой нейросети является нейрон, который принимает входные сигналы, обрабатывает их и генерирует выходной сигнал. Нейросеть состоит из множества нейронов, объединенных в слои, и каждый нейрон имеет веса и смещения.

      Мы также рассмотрели практические аспекты создания и обучения нейронных сетей с использованием библиотеки TensorFlow и фреймворка Keras. Мы описали процесс подготовки данных, создания модели, ее компиляции и обучения. Кроме того, мы обсудили важность проверки и оценки модели на тестовых данных.

      Коды, которые мы рассмотрели, позволяют создать и обучать нейронную сеть для решения конкретных задач, таких как автоматическое определение эмоций и распознавание изображений, определение эмоций и рекомендательная система. Эти примеры демонстрируют, как можно использовать нейронные сети для решения различных практических задач.

      Первая глава предоставляет базовые знания и практические навыки в области нейронных сетей и глубокого обучения, которые могут быть полезны как для начинающих, так и для опытных специалистов в этой области.

      Глава 2. Обучение нейросетей

      Обучение нейросетей – это процесс настройки параметров нейронной сети на основе примеров входных и выходных данных, чтобы она могла решать задачи, для которых она была создана. Этот процесс включает в себя подгонку параметров модели на основе набора данных, таким образом, чтобы она могла обобщать и делать предсказания для новых данных, которые она ранее не видела.

      Зачем нужно обучение нейросетей?

      Нейронные сети используются для решения СКАЧАТЬ