Название: Думай «почему?». Причина и следствие как ключ к мышлению
Автор: Джудиа Перл
Издательство: Издательство АСТ
Серия: Власть и успех
isbn: 978-5-17-123140-8, 978-5-17-146449-3
isbn:
2. Научное исследование всегда требует упрощать допущения, т. е. утверждения, которые исследователь признает достойными, чтобы сформулировать их на основе доступного знания. Большая его часть остается подразумеваемой исследователем, и в модели запечатлены только допущения, которые получили формулировку и таким образом обнаружили себя. В принципе, их реально вычленить из самой модели, поэтому некоторые логики решили, что такая модель представляет собой всего лишь список допущений. Специалисты по компьютерным наукам делают здесь исключение, отмечая, что способ, избранный для представления допущений, в состоянии сильно повлиять на возможность правильно их сформулировать, сделать из них выводы и даже продолжить или изменить их в свете новой убедительной информации.
3. Причинные модели записываются в разной форме. Это могут быть диаграммы причинности, структурные уравнения, логические утверждения и т. д. Я убежденный приверженец диаграмм причинности почти во всех случаях – прежде всего из-за их прозрачности, но также из-за конкретных ответов, которые они дают на многие вопросы, которые нам хотелось бы задать. Для этой диаграммы определение причинности будет простым, хотя и несколько метафорическим: переменная X – причина Y, если Y «слушает» X и приобретает значение, реагируя на то, что слышит. Например, если мы подозреваем, что продолжительность жизни пациента L «прислушивается» к тому, какое лекарство D было принято, то мы называем D причиной L и рисуем стрелку от D к L в диаграмме причинности. Естественно, ответ на наш вопрос о D и L, вероятно, зависит и от других переменных, которые тоже должны быть представлены на диаграмме вместе с их причинами и следствиями (здесь мы обозначим их совокупно как Z).
4. Эта практика слушания, предписанная путями в причинной модели, обычно приводит к наблюдаемым закономерностям или зависимостям в данных. Подобные закономерности называются проверяемыми выводами, потому что они могут быть использованы для проверки модели. Это утверждение вроде «Нет путей, соединяющих D и L», которое переводится в статистическое утверждение «D и L независимы», т. е. обнаружение D не влияет на вероятность L. Если данные противоречат этому выводу, то модель нужно пересмотреть. Чтобы это сделать, требуется еще один механизм, которые получает входные переменные из блоков 4 и 7 и вычисляет «степень пригодности», или степень, до которой данные совместимы с допущениями модели. Чтобы упростить диаграмму, я не стал показывать второй механизм на рис. 1.
5. Запросы, поступающие в механизм причинного анализа, – это научные вопросы, на которые мы хотим ответить. Их необходимо сформулировать, используя термины причинности. Скажем, что такое СКАЧАТЬ