Название: Думай «почему?». Причина и следствие как ключ к мышлению
Автор: Джудиа Перл
Издательство: Издательство АСТ
Серия: Власть и успех
isbn: 978-5-17-123140-8, 978-5-17-146449-3
isbn:
Интервенция стоит выше ассоциации, потому что подразумевает не только наблюдение, но и изменение. Когда мы видим дым и когда дымим сами, это подразумевает совершенно разное представление о вероятности пожара. На вопросы об интервенции нельзя ответить с помощью пассивно собранных данных, и неважно, насколько велик их объем или насколько глубока нейронная сеть. Для многих ученых стала настоящим ударом информация о том, что никакие методы, известные из статистики, не позволяют даже выразить простой вопрос, например «Что будет, если мы удвоим цену?», не говоря уже о его решении. Я знаю это, поскольку много раз помогал им подняться на следующую перекладину лестницы.
Почему нельзя ответить на вопрос о зубной нити просто при помощи наблюдения? Ведь можно заглянуть в нашу обширную базу данных о предыдущих покупках, посмотреть, что было раньше, когда зубная паста стоила в два раза больше? Причина в том, что в предыдущих случаях цена могла быть выше по другим причинам. Предположим, товара осталось немного и всем остальным магазинам тоже пришлось повысить цены. Но теперь вы размышляете о намеренном вмешательстве, после которого установится новая цена, независимо от условий на рынке. Результат может сильно отличаться от предыдущего, когда покупатель не мог купить товар по более выгодной цене в других местах. Если бы у вас были данные об условиях на рынке в других ситуациях, вероятно, вы смогли бы предсказать все это лучше, но какие данные нужны? И как это выяснить? Наука о причинном выводе позволяет нам отвечать именно на эти вопросы.
Непосредственный способ предсказать результат интервенции – провести с ней эксперимент в тщательно контролируемых условиях. Компании, работающие с большими данными, такие как «Фейсбук», знают об этом и постоянно ставят эксперименты, чтобы посмотреть, что случится, если по-другому разместить элементы на экране или показать клиенту новую подсказку (либо даже новую цену).
Еще интереснее тот факт, что успешные предсказания об эффекте интервенции иногда можно сделать даже без эксперимента, хотя это не так широко известно, и даже в Кремниевой долине. Предположим, менеджер по продажам создает модель потребительского поведения и учитывает в ней ситуацию на рынке. Если данных обо всех факторах не имеется, вероятно, получится подставить достаточно суррогатных ключей и сделать прогноз. Сильная и точная причинная модель позволит использовать данные с первого уровня (наблюдения), чтобы ответить на запросы со второго уровня (об интервенции). Без причинной модели нельзя перейти с первой перекладины СКАЧАТЬ