Название: Создание чат-ботов с Dialogflow, Watson, ChatterBot и Rasa
Автор: Тимур Машнин
Издательство: Автор
isbn:
isbn:
Используя эти возможности и то, что разработчик предоставляет в качестве входных данных для обучения, Dialogflow создает уникальные алгоритмы для каждого конкретного собеседника, при этом постоянно обучаясь и настраиваясь, по мере того как все больше и больше пользователей взаимодействуют с чат-ботом.
С Dialogflow вы можете быстро создать своего агента, начав с нескольких обучающих фраз или используя один из более чем 40 предварительно созданных агентов.
Эти предварительно созданные агенты могут использоваться непосредственно из коробки или импортироваться в ваш агент для создания и настройки вашего собственного варианта использования.
Они включают в себя все, от доставки еды до бронирования отелей, новостей и напоминаний.
И вы можете легко импортировать эти предварительно созданные агенты из консоли Dialogflow.
Встроенная аналитика Dialogueflow может многое рассказать вам о взаимодействии пользователей с вашим чат-ботом.
Например, она может показать вам, как часто срабатывают различные намерения.
Вы можете легко развернуть свой чат-бот на нескольких платформах, таких как Facebook Messenger, Twitter, и другие.
Давайте внимательнее посмотрим, как происходит диалог, чтобы понять, какие элементы понадобятся вашему чат-боту.
Естественно, диалог начинается с пользователя, которому что-то нужно от чат-бота, и он начинает разговор, чтобы сказать, что ему нужно.
Чат-бот должен сопоставить это с намерением, запрограммированным для обработки запроса.
Например, когда пользователь заказывает пиццу, распознается подходящее намерение для заказа пиццы.
И это намерение подразумевает наличие нескольких компонентов.
Что на самом деле говорит пользователь, какое действие предпринять, ответ чат-бота и понимание контекста.
И это намерение запускает действие по размещению заказа.
Это может быть похоже на функциональность сервера, который обрабатывает заказ.
Затем чат-бот может дать соответствующий ответ, например, подтверждение того, что заказ пользователя был размещен.
И чат-бот также должен иметь возможность обрабатывать ветвление диалога, которое не всегда следует именно этому потоку.
Например, что, если пользователь, заказавший пиццу, сделает дополнительный запрос на заказ?
Чат-бот должен поддерживать естественный разговор, который учится на прошлых диалогах.
Он может вернуться к тому же самому намерению и добавить дополнительный уровень контекста или осведомленности, чтобы понять, что слово «оба» в запросе пользователя относится к двум пиццам, которые он заказывает.
Ваш чат-бот может скорректировать заказ и удовлетворить дополнительный запрос пользователя.
СКАЧАТЬ