Как выйти за пределы своих возможностей. Наука и искусство высоких достижений. Джорджио Нардонэ
Чтение книги онлайн.

Читать онлайн книгу Как выйти за пределы своих возможностей. Наука и искусство высоких достижений - Джорджио Нардонэ страница 8

СКАЧАТЬ новое качество появляется при взаимодействии некоторого числа элементов, которое влечёт за собой создание новых свойств. Новое возникающее качество свидетельствует об эволюции системы.

      5

      Термин «гомеостаз» происходит от греческих слов òmois – «одинаковый» и stasis – «положение» и означает тенденцию всех живых организмов поддерживать постоянные условия жизни во внутренней среде, то есть собственное равновесие, несмотря на изменения во внешней среде.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAJLAWgDASIAAhEBAxEB/8QAHAAAAgIDAQEAAAAAAAAAAAAAAgMAAQQFBgcI/8QAShAAAQMDAwEFAwgHBgUDBAMAAQACEQMEIQUSMUEGEyJRYRQycSNCUoGRobHBBxUzYnKS0RY0c7Lh8CQ1U1SCNkTxFyVD0iaiwv/EABUBAQEAAAAAAAAAAAAAAAAAAAAB/8QAFBEBAAAAAAAAAAAAAAAAAAAAAP/aAAwDAQACEQMRAD8AOlBpNMdFkNY0j3UmhlrU9koKLG/RCsUx1AVxyo3CgHu2/RCmxp+aEX1oeuEAlrOjVWwB0widhXzyqG0WMLY2BN7ln0AlMMEGVkA7lBjPoAPGMKu7aOQsp7JZjlYxxzyqA2NnDQrLB9FXGcKHDlAIY3d7qjmN+iEU+JQ8oFBjT0VbAeiOPFhUQS5ULLQOivYDGFZGYVoALM8KnN2hHGeFCN3KANoVhgVxCKJCChTB6K+7CtuFfrlAkN6QmNpwchE0ojlAG1pdwoGNzhEcNGMqNGEE2N3e6FNjPohXHiVuG0YUFd236IVOpt3TCs45V4jhABpg9FYY3yCOBCjRPRAOxo5aFGUgegREIqYygjqbA2duUL6bGiNqMiXHHCB+TCBRY2PdCoMaTwEUHqra3PCCjTaBwh2AnARuUgcKgHsG0wFFdQwwiFEA0BgJ2dsJFBxhOLo+tQRvqiwlyTxwrDj5ILnxRCoegRSZBUjKAY3FVEIhAVGOqCwsik8kQsYFNY6DKDIHSUioIqFZGCBCCq2W+bkGP1UIkyiMdEPJQV1UJCuAqIQUgIlNhDGUAcqo8k0gBA4GCqBzChKvmFZbA9UAZKIcKNbKLagqICvJCtWMKAQRKIDCGMohKCRjKnHCgd0KhJQXChGMqgrQUochWpKCpxCts9EOZUGCUFkJrcNkJYklNafDthBJ8MpE5JTqktEJBlBYMq+ELZRGCgWclECSYhSAp85BVQjaogreUqKgaHup/ISbf3ZTjtyVBZMCEAbJREiVYaXua1vJMBBstJ0O51iuKdAQwe/UPDV1DeymiWLNt7e7n8e9EfYsm8rjs32VoNtwG16oA3D6REkrz+pVq1qrqtWo6o9xkueZJVHZ3PY20uKBqaZdh5HzCcFcVc21W1ruoVmlj2e8CszTdUu9LrNq2znBp5YeCkXl3Xvrl9zcOLnuznp8ECICsYVSrmFBuuz1lT1PUGW1UkNgzCZrens07U6ltTcXMgHPwTOxp/8A5BS9Wu/BO7XR/aCr/C38Ag5t42uyIQF2ccptZpdlIIM8KgtpJgAn810+ldj7i7pC4vKjbagRgE+JK7IaWy91YVKoDmW/ig5k9E3tVrle5vn2VCo5lvT8MNMbvig2R7IaQ4bGah8p8QtFrPZm60tvfN+WoH5zfmrSTDgWmHDqF2vZHV334fpd841RsO0vz14QcQ47hKE8FbLW7Eadq1xbj3Q4lvwWvLVBQA+pbvs1oVPW61ZlWs6n3bQ4QFo+WkdF2f6PhF1edfAPxQNf2FtXAto6h8p5GFy+raTcaRddzcZ+i8cELLq+1jtI8WpqB/f/ADSQIlb/ALclh06yZU/byNx68GfvVHCTznhFulDyTPKIjGFBRIDiPPk+i6TQ+y1xqbBcVj3FvPJ5K1eiWQ1HV7e2cJZvG6fKV1PbDVall3WmWjjSbsBcWHb14+5UNPZ3s5TIpPuvlBidxWBq3Y11G3Nzp1UVqYztnMei5WC52ZdK2dnreoafaVLelUeWObABzt+CDVQRIzI5kKSrcXE7nEk9QSq+pQVyV0nZnQbfWaNxUrue003Yhc2u77Bf3W8j6X5BUcTcUhTuKtMcNeR96UMJ967/AI6v/iO/FI5KgOnysq3tql3cNpUGd4/oPNJpsG3ldp2PtqVnpVzqdUS7oSMgBAFHsdaW9IP1O8AdztBRf2Y0C9BZZ3m2p/ET+K5LVNUudUuTVrVHkTLWbiQ1YdN76VQPY4tc0yHDBH1qjY6xod1o1zsrDdTd7lRvBWrXoWn1h2k7KXFG58dakCNxyZHiB/BefvpllRzHHLTCATPRVElWqwOqgGo3wlRXUMNIUVFUxsHmEchwgYQUh4UyIQUCA5HTqCnWpvIw14P3oAJJCpw2eqD0HtXRdfdmrS6o5aza50dBt/1XBNcDUAdnMldT2Y7SUrWh+rr8TbOkMeTgenwWyuOx2m37vaLC9YxjvFiHAfBAzT9c0a9uaNrS00d44hv7MYWp7dU7ejeW1KhTp0y1pcdreZ/+Ft7e30XspTNZ9wytcnw5cJ+oLh9U1Cpqt6+7rN2udw36PkEGIPirHvcYQA5Vl/iEIOj7GZ7Q0f4XfgsntYQe0NYddrfwCw+yFVlLtDSc94a2HZJ9EztVXpv7R1nMcxzC1okH91Bqi3wQsfO6DwsknwpLxABUHT9ga4p6hcUXe9UYCPqlaXXrWpaaxc0348Ug+YKxLO9qWN5RuaB8dN054IXcm50ftVatZcVG0LoCILgCPh5qjz0iRC6TsTa1K2tCqPcpMJJ+xbMdhKLHy/UopeW2D9sp13q2mdnbB1npe2tXdgkGfrJCDnu1tVlftDcFvushp+IWh3SnVHuqVHPeZe7O5IMSoL6Fdr+j7+83n8AXFwR15C7DsDVZSuLsve1rdg5MdUHV219Tu6N0bOkwXNJzm7T5rzXWLy8vdRqm8EVWkt29BCzqOrv0vtJVrsM0zVIe2cbVtu1dhbahat1WzqMLyAXsB94R/wDCo4gxukccyrVlsBXgKDcdl67bbtFbOfw52wH4rZduLR7dVp3EE06lMAH1krlWvLHbp2uHUdCu70vXrDWrD2DVwynV4BcYB9ZPVUcno91RsNSpXFxS72kyQ5sTyCPzXfaNqOmaxXqU6Ng1gptkuLQtYexVg6pvp6hFHywcfFHeatpnZzTnWemuZVuDiQ4O+swg5btEWfr267lgaGvLcccrVtBAiZRvqmpUNR5lzzucfVBOIUBLuewX90vD+9+QXCTkQu37EV6NC1uxWqU2S7G50dAqOOvBN9X/AMR34pI5TbuDeV3Tje78UFIZUDHCGgLvezrRfdlK9mww+C37eFwZMv8Agtjo2t1dHvg9jQ5lT9owclBqKjH06hY8Q5vIKFxhvPK9CuLDQ+0kXFG6bSr9YcJ+sJFHsjpVg/v77UQ9rTMOcGtPxVBdkKJsuzl3dVcMfuc2eoA/qFwlw/fXqPbw5xP2mV1HaXtHTuaH6v0/w2zYDnj50ZgLlJk5QLKhG5qYB5KAYQJc0gFRHUHgJUQNotgBHUZ4ccoaZ8IMJg8SgQGwQrqN3Nwiq08yFCDAhAALgB5plOpVY2GvcPgUp07gDj4op4gqiVHPc7xEn4oSc/FXUPCprmkSgEDChBBVzmVRMmEDGFzTPHqEcyZOfik7oTGy4SPrI6IMsO3MhD72CkMeQR5LIx0UGO7wvhRpLYgxHkmVaYHiCAQEDHV6pZHevj+JKnHKg4IKo8KiF0GeUBHi4RTnzHRQ5UEdkQq3FglriPgrAU94ILHiEqd46MvMfFDwMHCAmUFudJRRIQAQcpgEoBad0yia4ZQiOeFbW4VDRVqRHePj4pZJ3Tyj/BCeeigAHkK+VAMlX0QW0SUYc5uJhA0EvDQJJPRQkFyCHPKbRaAC48JRzCfEUmjzQU3qfNJe6XOCc8bWBIkThBDVcMgkH0VOrOfEvcfiVTpPRCGyqLn1QbnTlGABHqqAQVJ6KCZTI8IIVCdwCCm0y6m4niFFkRFBwPkogxqFTIlZBORCw6Y8IIWUxxESgIkpVSQcJpIPIUgBpKDtbjs1T1Xs3aXFFgbdNpAzxuXB1adShUfTqsLHsdBBXp7dSdpfZK1ugA4NY2R6LA1fSbTtNYM1LTtra8bnAiN3ofVBynZm3o3ut0KVdgqMPLSndrbKhZ626lbUhTZsadrfiUfZWm+l2mo03t2uaSHA9MhO7amO0T/8Nv4lBzQAlHtB5UIg4U9PNQUacruOzXZynX0KvVrsBdcNhk9B/sLlNKsn6jqdC2piS4+I+i7/AFLW6Wj31jp9LFNoAqR80RhUed16D6FepRqCH03Fp+pXSduC6Pttpwtr9l7THydf3o8/9VyzXbXweZQZRbPh80Nq0Ovbdhy01WtcD8Vc5lFbiNTtIGDWZ+IUHfX9t2f0qjSdd2rWh+JAJWs1Hs9pt/pzr3SHRtztBMH7Vm9r9Nu9Rt7VtrRdU2mXQPRTSLR3Z3Qbl985oNTIbPHoqPOyPEfPiPIKInGXT0PMIZUD7JjamoWzHglrqrWkfWvQtQodntJZRN3asaanENJXn2n51Sz/AMdn+YLru3pilY4QZA0rszrdMts3CnW6EFwK5DWNIr6PeOoVcsPuu81h29epa12VqTy1zHSD5ru+0obqHZG3vnD5Rga4nrxn8VRwBAKjjAViOnCr16qDM07Tq2p3jbag2SYz9ELs/Yuz/Zuiz2wNrXHkQXH7OEvsXRp22jXmokS8bgT6NbP5rjL67q3d5UrV3l73O6qjt2ax2Z1Bwo1rNtLdiTTDf8q1PaHsw2yo+3WDt9qcuEztXLAnqu87G3ZvtLurGv42sHhDvJBwgncpMEBOvKQt72vQH/46jm/eknJKgztHDXa1ZAiZrswf4l0favsuaQdfWNMbPeqMH4rm9E/57Yf47P8AMF6Hq+vM0rVLe2uGzb12AOxO0kkZ9FR5fSBLhuXbdk7G1u7O7dXosqOYfDPTCV2h7Ospg6lYhpoO8TmNHHqszsPPsN8eCXcfUg42/bF1WY3EPcI+tYRBAWdfu3X9f/Fd+KxJEqAACSJEr028t9C0myo1rqzZDxyGyvNgRuaV6jrOjDWtOt6RrCkG5k9VRo62q9lnUagZaAO2nadnVcTUg1nlnuSS1dhX7D9xb1avt7TtaXRHMBce8bXFvUHlQDtMeqdQpeLdCFg3OGfistpAERwgRVaRSf8AwqI679tJ48wog11ISAshJpCWgp0wgjHA88JvTHCSTBhE1/Tog77VP/QVL+Bq5HRdcr6JdbmEvpOw+mTz6rf6hrNlW7JU7JlWawa0QVx5Egg/UqPULews9TvLbWrNwa75wA97hcb23MdoX/4TZ+0rE0DXa+i3ZOXUH++ycfFH2su6N9q/f27w9hptiOmSg0gdwrcQHjlCR4UyixrqjBUMMJAcfIdUHc9h7BlrZ1dUuCGh8taT0bMfksu907s9fXr7mtfjvHHI7xajXdetDoNDTdOLnNG1rjEYH+q5PkDyQepahZ22raC60tqzavdNG107iCBheWQRUI6yt/2U1lmk6hU78xb1W+KB16fmsHXHWtTVa1WyfNJ53ZEQUGNTeTgrKsxN/b/4zPxC17SWvB6LNtKrad1RqOw1tRrj8JUHo+q6wdKubFrxNGqdrz5YK0HbWzuHtZeMrPqWrolk+FuMFYva3V7TUaFu23eXbfekQmaB2ithpr9P1KTSDYY6Jx5KjjjAk/V/qoBCybxlGndVGWz99LcdpIzCx0D9Mn9a2hPHfM/zBdd2+/Z2ImMLkLCo2hf0Kz8NZUa53wBXfXeu9nL9tP2v5TYMSxBwdnZ1725p21Fhc55/lHmu17VPZp3Zm302dzyGtcPQDn7UDu1Wj6ZSc3S7OXu8htC47UNRranfPubky92BHDQgxAIafNWBIUA8WSrgc9FB3HYe4p19OvNNc6CZP1OEfkuR1XT62mX1SjWwZ8JPDkuzu61hcMuKLoqMIIPmuzodqNJ1i2FHVbbZU4nkfaqOFiY6eq7/ALLWX6o0S5v7o7e8buE4hvA/JCy67K6c7vqTW1KjctAgwtBr/aetrDjRpt7q2Bw2ZLvig01zVNxc1a0R3j3O+0pQ4VzkdYwqAhuVBn6IQdcsf8dn+YLo+339+tf8L8yuW0utTttUta9QwynVa5x9AVvO1mq2uq3dB9q4lrWbTIjqVRk9me0HsrW2N4d1s/wgu+bPT/fmuusdMo6fTun25ijWG8N+jheV43BoHxK6nQe0nstP2G8dNJzTseenog5a7cDqNcTnvHfikkQUy62e3V3N4NR0H60qZ5UEHvA+q9A7Z1H09GsyxxaZ5BjyXn/UfFeiV+0HZ68taVO7moGjgsVHn7rquQR39Qg/vJZPg8yu3q3vZI0HinQAftO3wdVxrQ2pXdtEM3GPgglGnDZIycppdtblHEAeixq9QuwJUC6tTfuJ4hRDUkAgeSioXSO1gBT+eVjUzjMyngEmVBZgjCx+8h+1OnmEBb45hUGKkD+qaDjMysZ0k8eEeSYx0uDTJKA3AkcLHc2NwnAHRZJcQJ9OiU4TJbB6BADT0RgEDhAzBIgjpCMPPlhAcf7CoyPVCJJHQqEnn74QTMHCsHKESTIImchVnH3oGuOPRHRfIj8UklxjwwVGuIegzHDc2IErH4OVksO4B0YH4pFT3vIHooB6ITgSr3Tn7uiqP9hBQPxV/ESiDTzB+McIMyfzQWVXAVtyoUEH0iiKBxgeihLgc/CUFlUG/YpM5GURO0CUEGOIjyVRLvRT81EEBl0Kzyhbmf8A4UMmOvoqJOYiU1g8WErg/gnsEAu9ICgNg8bnJdQzUJ6BNAhhzlY5I3chBAIny9VSsgiC4R8VRAQVg4VnCEHIznyREAH1+KoHkALNo09jR5pFCCfP0Tu9AE9OigKq/Y1YRciq1tz5Sy8bgglTDXczCiGo4EFRUBSzATgQCQkMdIgJk4/NARHkm0Qx9WkKhhheA74SlAQm27adW5p0nv2sc4Au8lB2GqPp6fTFOnpFKtp7qTYrMEuJjmeeVxD43EtECcCeF3mm6fqGmX5YbnvtILCSXvkbY6D4ri73uvbLg0P2Xeu2Y+bJhUb/ALIX9KtdUtPrWVCo1zp3vbJWHrV6y8rhjLajQFMuHybYlX2Sga9bkwBKwbp4N7WH7xQZvZuhTq6/bNewPaTMHIP2rb6vWvWULlh0W2ZRbI71rGyB5rW9mIGvWxPAP2LN1iw13/iaj7iobWSSzvjEIOS3ERHJXbaW2ozsrb1rXTqN1XdWc1we0Yb4vP6lxUeLy+9dS66rWnYizNvWfSebgtJY/aY8SDS6q+q7UKrq1uy3eeabAICRZWj7+9pW1L36joHohrVqtw81K73PeTlxMldH2Z7jT7W41i6EtZ4aQbyT/uEBdp9NtqVpRubGCyj8jUjzGf8A/S5Uuk+UcrtrDUNI1Kjcabb0K1I3LXEGqZG6MdVx1aiaNxUou95hgoOo7L2lre6Tesuoa0OG15+bwsRmkvstft7eswOYX+E8hzYRaM7b2W1WSJ3N/FqzdB1u3uXUbPUfFsM0ap5afJBoNeptp63dsptDWiq7a1vHKb2f02nqV8RcGLek0vqdJS+0Dh+vr0jrWcZHxKyezeoUbTUKlG5JFC4Zsc7yQZb+09Gm/ZbaZb+ytxD2DcQsfXbG2Nrb6nYt2ULgQ5n0XI6vZO/9omgaFSm4yKm/EeuFNdrULTT7XR7d/emjL6jxxJ6IOebIUnKppyjjqVALc1GhwnxL0TULSjXu7iyfp9Jls233iu1sEO+pees/bNzHXlek3LdR/XraouKTdMDB3rXuwR1EKjzONpcIhZFlavvb6lbMEmo4D6ld6aXt9w6j+yDsLfdnBQ0+2uNYuhLaXgptHMnn8UDO0mm21Ozo3NkAWUYpVdv0v9lcoZ3Art7DUdJ1FlxptC3q0jdBzpqGRuifP0XHVqD6FerTfG6mS3HxQdJ2eLKOhX917JTuKtNzdoezd5pXaS3oC2sLtlu23rVmuc+mMfR/qsns3fO07Qb+5bt3Ne0x58rG7U0zcuo6lRrmpb1wYDj+zPkg0Npc+x12V2sZU2GdrxIK7C91ZtLQLK6bYWoqXW4PHdjHwXEhpkj1XUajB7LaUJEtLkHO1qkuPTdnC6Kk207P6TQuqtsyve3DdzQ8SGtXL1SXPgfV6LqH0G9pNItRb1WNvbVmx1OoY3N9PuQFZanba5cewX1pRY+p+yq0m7Yd6wuYvaLrS8q2z+WPLSuj0vQ36RdN1HVK1OnSo+JrAcud/uVzt/W9sv7i5OO9e54B6SUG57NU6dfT9ae+k1xZby0kTtMOWhA3OAHmui7JUXVrXWaLdveVaAazPJhy1lxpFzplQe0hoc4S0NKDZ9mKNOprFJj2NczY+QR+6Vp9ReG3ddjQABVdA8 СКАЧАТЬ