Sustainable Nanotechnology. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Sustainable Nanotechnology - Группа авторов страница 20

Название: Sustainable Nanotechnology

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр:

Серия:

isbn: 9781119650317

isbn:

СКАЧАТЬ MnO 2 nanotubes for cancer diagnosis. ACS Applied Materials & Interfaces 10: 44231–44239.

      35 35 Berber, M.R., Elkhenany, H., Hafez, I.H. et al. (2020). Efficient tailoring of platinum nanoparticles supported on multiwalled carbon nanotubes for cancer therapy. Nanomedicine 15: 793–808.

      36 36 Singh, S., Mehra, N.K., and Jain, N.K. (2016). Development and characterization of the paclitaxel loaded riboflavin and thiamine conjugated carbon nanotubes for cancer treatment. Pharmaceutical Research 33: 1769–1781.

      37 37 Layton, E., McNamar, R., Hasanjee, A.M. et al. (2017). The effects of single‐walled carbon nanotubes on cancer cell migration using a pancreatic tumor model. In: Biophotonics Immune Responses XII (ed. W.R. Chen), 7. The International Society for Optics and Photonics (SPIE).

      38 38 Qiao, H., Zhu, Z., Fang, D. et al. (2018). Redox‐triggered mitoxantrone prodrug micelles for overcoming multidrug‐resistant breast cancer. Journal of Drug Targeting 26: 75–85.

      39 39 Zhang, X. (2018). Mini‐review: nanotechnology forms of drug delivery. Journal of Drug Delivery and Therapeutics 8: 275–277.

      40 40 Ravichandran, S. (2010). Green chemistry – a potential tool for chemical synthesis. International Journal of ChemTech Research 2: 2188–2191.

      41 41 Jahangirian, H., Lemraski, E.G., Webster, T.J. et al. (2017). A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. International Journal of Nanomedicine 12: 2957–2978.

      42 42 Li, X., Gong, Y., Zhou, X. et al. (2016). Facile synthesis of soybean phospholipid‐encapsulated MoS2 nanosheets for efficient in vitro and in vivo photothermal regression of breast tumor. International Journal of Nanomedicine 11: 1819–1833.

      43 43 Pozdnyakov, A.S., Emel’yanov, A.I., Kuznetsova, N.P. et al. (2016). Nontoxic hydrophilic polymeric nanocomposites containing silver nanoparticles with strong antimicrobial activity. International Journal of Nanomedicine 11: 1295–1304.

      44 44 Chen, Z., Zhang, T., Wu, B., and Zhang, X. (2016). Insights into the therapeutic potential of hypoxia‐inducible factor‐1α small interfering RNA in malignant melanoma delivered via folate‐decorated cationic liposomes. International Journal of Nanomedicine 11: 991–1002.

      45 45 Chen, L.C., Chen, Y.C., Su, C.Y. et al. (2016). Development and characterization of self‐assembling lecithin‐based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study. International Journal of Nanomedicine 11: 1557–1566.

      46 46 Erdal, M.S., Ozhan, G., Mat, M.C. et al. (2016). Colloidal nanocarriers for the enhanced cutaneous delivery of naftifine: characterization studies and in vitro and in vivo evaluations. International Journal of Nanomedicine 11: 1027–1037.

      47 47 Bellan, L.M., Wu, D., and Langer, R.S. (2011). Current trends in nanobiosensor technology. Wiley Interdisciplinary Reviews, Nanomedicine and Nanobiotechnology 3: 229–246.

      48 48 Kim, Y.G., Moon, S., Kuritzkes, D.R., and Demirci, U. (2009). Quantum dot‐based HIV capture and imaging in a microfluidic channel. Biosensors & Bioelectronics 25: 253–258.

      49 49 Cao, Q., Teng, Y., Yang, X. et al. (2015). A label‐free fluorescent molecular beacon based on DNA‐Ag nanoclusters for the construction of versatile Biosensors. Biosensors & Bioelectronics 74: 318–321.

      50 50 Altay, C., Senay, R.H., Eksin, E. et al. (2017). Development of amino functionalized carbon coated magnetic nanoparticles and their application to electrochemical detection of hybridization of nucleic acids. Talanta 164: 175–182.

      51 51 Mokhtarzadeh, A., Eivazzadeh‐Keihan, R., Pashazadeh, P. et al. (2017). Nanomaterial‐based biosensors for detection of pathogenic virus. Trends in Analytical Chemistry 97: 445–457.

      52 52 Keshavarzi, M., Darijani, M., Momeni, F. et al. (2017). Molecular imaging and oral cancer diagnosis and therapy. Journal of Cellular Biochemistry 118: 3055–3060.

      53 53 Keshavarzi, M., Sorayayi, S., JafarRezaei, M. et al. (2017). MicroRNAs‐based imaging techniques in cancer diagnosis and therapy. Journal of Cellular Biochemistry 118: 4121–4128.

      54 54 Jafari, S.H., Saadatpour, Z., Salmaninejad, A. et al. (2018). Breast cancer diagnosis: imaging techniques and biochemical markers. Journal of Cellular Physiology 233: 5200–5213.

      55 55 Guo, J., Yuan, C., Yan, Q. et al. (2018). An electrochemical biosensor for microRNA‐196a detection based on cyclic enzymatic signal amplification and template‐free DNA extension reaction with the adsorption of methylene blue. Biosensors & Bioelectronics 105: 103–108.

      56 56 Liu, C., Chen, C., Li, S. et al. (2018). Target‐triggered catalytic hairpin assembly‐induced core‐satellite nanostructures for high‐sensitive “off‐to‐on” SERS detection of intracellular MicroRNA. Analytical Chemistry 90: 10591–10599.

      57 57 de Souza, M.F., de Syllos Cólus, I.M., Fonseca, A.S. et al. (2017). Abstract 1476: Cell‐free miR‐141 as a molecular marker for prostate cancer metastasis. https://cancerres.aacrjournals.org/content/77/13_Supplement/1476 (accessed 1 August 2020).

      58 58 Cheng, H., Zhang, L., Cogdell, D.E. et al. (2011). Circulating plasma MiR‐141 is a novel biomarker for metastatic colon cancer and predicts poor prognosis. PLoS One 6: e17745.

      59 59 Iorio, M.V., Visone, R., Di Leva, G. et al. (2007). MicroRNA signatures in human ovarian cancer. Cancer Research 67: 8699–8707.

      60 60 Tran, H.V., Piro, B., Reisberg, S. et al. (2014). An electrochemical ELISA‐like immunosensor for miRNAs detection based on screen‐printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. Biosensors & Bioelectronics 62: 25–30.

      61 61 Fang, C., Zhu, D.X., Dong, H.J. et al. (2012). Serum microRNAs are promising novel biomarkers for diffuse large B cell lymphoma. Annals of Hematology 91: 553–559.

      62 62 Azimzadeh, M., Rahaie, M., Nasirizadeh, N. et al. (2016). An electrochemical nanobiosensor for plasma miRNA‐155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosensors & Bioelectronics 77: 99–106.

      63 63 Cheng, Y., Ji, R., Yue, J. et al. (2007). MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a pole in cardiac hypertrophy? The American Journal of Pathology 170: 1831–1840.

      64 64 Cheng, F.F., He, T.T., Miao, H.T. et al. (2015). Electron transfer mediated electrochemical biosensor for microRNAs detection based on metal ion functionalized titanium phosphate nanospheres at attomole level. ACS Applied Materials & Interfaces 7: 2979–2985.

      65 65 Shabaninejad, Z., Yousefi, F., Movahedpour, A. et al. (2019). Electrochemical‐based biosensors for microRNA detection: nanotechnology comes into view. Analytical Biochemistry 581: 113349.

      66 66 Pretty, J., Sutherland, W.J., Ashby, J., and Auburn, J. (2010). Taylor & Francis Online: The top 100 questions of importance to the future of global agriculture. International Journal of Agricultural Sustainability 8 (4): 219–236.

      67 67 Vermeulen, S.J., Campbell, B.M., and Ingram, J.S.I. (2012). Climate change and food systems. Annual Review of Environment and Resources 37: 195–222.

      68 68 Foley, J.A., DeFries, R., Asner, G.P. et al. (2005). Global consequences of land use. Science 309: 570–574.

      69 69 Viala, E. (2008). СКАЧАТЬ