Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей. Алексей Семихатов
Чтение книги онлайн.

Читать онлайн книгу Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Семихатов страница 27

СКАЧАТЬ как Гоблин) и 2014 FE72.

      Рис. 2.10. Большие планеты изменяют траектории «Вояджеров», ускоряя их при этом. Засечками показаны точки траектории, в которых «Вояджеры» и планеты находились в определенные даты каждый год

      Главное действующее лицо в истории про гравитационную пращу – гипербола (см. главу «прогулка 1»). Представим себе, что космический аппарат – скажем, запущенный с Земли – подлетает к Юпитеру достаточно быстро, со скоростью, которая не позволит Юпитеру оставить этот аппарат в зоне своего притяжения. Если временно забыть про притяжение Солнца, а кроме того, смотреть на происходящее, сидя на Юпитере, то картина хорошо известна: космический корабль приходит издалека по ветви гиперболы, отклоняется и уходит прочь. Приходящая и уходящая ветви гиперболы симметричны, и даже скорость движения при прощании с Юпитером такая же по величине, как скорость при сближении с Юпитером на том же расстоянии от него. Но это если смотреть с Юпитера! А если смотреть с Солнца, то движется не только сам аппарат, но и Юпитер, и скорость их сближения – это результат несложного математического действия со скоростями каждого. В начале всего эпизода мы пересчитываем скорость аппарата относительно Солнца в скорость сближения с Юпитером. В конце эпизода мы выполняем обратное действие: скорость удаления от Юпитера пересчитываем в скорость аппарата относительно Солнца. Казалось бы, это два взаимно противоположных действия: сколько сначала добавили, столько потом и вычли? Нет! Суть дела в том, что корабль повернул вокруг планеты: его скорость изменила направление. Поэтому скорость Юпитера, учитываемая на входе, и она же, учитываемая на выходе, не сокращают друг друга. Направлениями можно распорядиться так, что относительно Солнца корабль ускорится в результате пролета мимо Юпитера. В этом и состоит идея гравитационной пращи. Чуда в том, что корабль ускорился, «просто» пройдя мимо планеты, нет: дополнительная энергия движения относительно Солнца получена из энергии движения Юпитера; а сам он такого комариного укуса вообще не заметит (в расчетах с любой точностью можно считать, что скорость Юпитера не изменяется). Совсем наглядно происходящее видно из рис. 2.11, где, впрочем, ради этой наглядности пришлось кое-чем пожертвовать. Там предполагается, что космический корабль поворачивает вокруг планеты на 180°, чего не случается при движении по гиперболе: ее ветви расходятся все-таки под некоторым углом и никогда не бывают параллельными. Об изображенном на рисунке можно думать как о случае, к которому можно приблизиться, выбирая все более экстремальные гиперболы. Зато там все совсем просто со скоростями. Скорость корабля относительно Солнца v, а скорость планеты ему навстречу U, а тогда скорость сближения (скорость относительно Юпитера) равна v + U; после поворота на 180° она осталась численно равной v + U, но направлена в противоположную сторону – и это по-прежнему скорость относительно Юпитера. Однако теперь, после разворота корабля, Юпитер «несет» его по своей орбите, СКАЧАТЬ