Физика ускорителей заряженных частиц. Учебное пособие. Ибратжон Хатамович Алиев
Чтение книги онлайн.

Читать онлайн книгу Физика ускорителей заряженных частиц. Учебное пособие - Ибратжон Хатамович Алиев страница 3

СКАЧАТЬ обстоятельства не требует комментариев, поскольку благодаря ему были впоследствии получены точные количественные сведения о сечениях реакции захвата и деления, ибо реакции с нейтронами привлекли в дальнейшем большое внимание за счёт урановой технологии.

      Проблема ускорения электронов стояла несколько особняком и не могла быть решена на пути развития циклотрона, принципиально не пригодного для ускорения релятивистских частиц. Линейные же ускорители пережили своё настоящее второе рождение лишь после второй мировой воны в связи с бурным развитием техники генерации СВЧ-колебаний для целей радиолокации. Однако в 1940 году Д. Керстом в США был запущен циклический индукционный, то есть не резонансный ускоритель – бетатрон на 2,3 МэВ, основная идея которого содержалась в патентах Слепяна. Близко к созданию бетатрона подошёл Видерое, впервые сформулировавший так называемое бетатронное условие, позволяющее сохранить при ускорении радиус орбиты почти постоянным, что оказалось важным с практической точки зрения. Кроме того, в начале 40-х годов были чётко выяснены условия устойчивости движения электронов в бетатроне, что имело принципиальное значение. Дело в том, что ускоряющее электрическое поле в бетатроне в практических условиях оказывается очень малым и для достижения одной и той же энергии частица вместо сотен метров, как в циклотроне, должна пройти полный путь в тысячи километров, на котором, естественно, сильно сказываются даже малые возмущения движения.

      Работа Керста была повторена, хотя и не сразу, в нескольких лабораториях, в том числе и в СССР, и бетатрон вскоре стал надёжным и простым источником тормозного излучения, используемым в физики фотоядерных реакций и в технике. Однако главный недостаток циклотрона – небольшое ускоряющее поле, почти неизбежно следующий из нерезонансного характера ускорения, он и определял максимальную энергию на уровне 100 МэВ, когда же крупнейший бетатрон Иллинойского университета в США давал энергию 300 МэВ. Принципиальный характер этого ограничения связан с магнитотормозным или точнее синхротронным излучением частиц, двигающихся по окружности в самой вакуумной камере.

      Теория синхротронного излучения, развитая в начале 40-х годов и хорошо подтверждённая экспериментально, указывала на неизбежное возрастание с энергией радиационных потерь, которые не могли быть восполнены относительно малым ускоряющим полем бетатрона. Таким образом, в начале 40-х годов сложилась внешне тупиковая ситуация: казалось, что резонансные методы достигли своего потолка, связанного с релятивистскими эффектами, а нерезонансные сталкивались с непреодолимыми техническими трудностями. В то же время переход в диапазон энергий порядка сотен МэВ был необходим в связи с появлением новой отрасли науки – физики элементарных частиц и требованиями генерации недавно открытых мезонов, когда же энергия покоя μ-мезона составляет 106 МэВ, СКАЧАТЬ