Название: Невозможность второго рода. Невероятные поиски новой формы вещества
Автор: Пол Стейнхардт
Издательство: Издательство АСТ
Жанр: Физика
Серия: Элементы 2.0
isbn: 978-5-17-122038-9
isbn:
Мы последовали своей обычной практике – стали конструировать физические модели изучаемых абстрактных, теоретических объектов, чтобы визуализировать структуру. Так что мой кабинет вновь превратился в забавную поделочную мастерскую.
Меньшей проблемой было изготовление двух типов строительных блоков. Мы делали картонные развертки широких и узких ромбоэдров, из которых составлялись четыре типа блоков – два узких и два широких. Мы склеивали их липкой лентой согласно принятым нами правилам совмещения, но все это превращалось в один сплошной липкий кошмар. Так что мы закатали рукава и приклеили магниты по углам всех наших картонных разверток. Магниты располагались как раз так, чтобы исполнять роль замков. Благодаря этому блоки соединялись друг с другом только в том случае, если соблюдались правила для трехмерных замков. Это был высокоорганизованный хаос, по крайней мере, так я говорил озадаченным посетителям моего кабинета.
Фотографии некоторых из наших конструкций представлены на иллюстрации выше. Слева вверху – группа из десяти широких и десяти узких ромбоэдров, образующих почти сферическую форму.
Внешняя поверхность этой группы носит труднопроизносимое название – ромботриаконтаэдр, что по-гречески означает “тридцать граней одинаковой ромбической формы на поверхности”.
На среднем изображении из модели удален тонкий ромбоэдр, чтобы частично приоткрыть ее внутреннее устройство. На правом для лучшего обзора удален еще и широкий ромбоэдр.
Ромботриаконтаэдр был первым шагом на пути к демонстрации упаковки широких и узких ромбоэдров в квазипериодическое построение сколь угодно большого размера при сохранении икосаэдрической симметрии. Не менее важным было отсутствие зазоров между строительными блоками (ромбоэдрами) и тот факт, что наши новые замки запрещали им формировать любые иные типы структур, включая обыкновенную периодическую кристаллическую решетку.
Теперь, когда мы убедились в том, что трехмерные квазикристаллы теоретически возможны, нам требовалось найти группы атомов, способные соединяться между собой аналогичным образом, то есть по тем же правилам совмещения, при которых квазикристалл СКАЧАТЬ