Название: Общая теория поля и структура вселенной
Автор: А. Т. Серков
Издательство: Издание книг ком
Жанр: Физика
isbn:
isbn:
Понятно, что изменение характера орбит при уменьшении их энергии предписывается обратно квадратичным законом тяготения и потому является всеобщим, универсальным. Следовательно, на основании изложенного можно полагать, что и фазовый переход 2-го рода также имеет универсальный характер, что каждое вещество претерпевает этот переход при снижении температуры в определённом интервале температур путём изменения типа орбиты с эллиптической на круговую. Однако, изменяющиеся свойства (сверхпроводимость, сверхтекучесть, намагниченность, хрупкость) и интервал температур перехода зависят от индивидуальных особенностей вещества, хотя общая закономерность, задаваемая переходом от эллиптических орбит к менее энергоёмким круговым должна сохраняться во всех случаях.
Теперь продемонстрируем действие рассмотренных законов в широком диапазоне атомных параметров. Начнём с крайних случаёв с самой коротковолновой серии рентгеновского излучения и строения атома урана, обладающего наибольшей атомной массой.
Рентгеновское излучение α1 в серии K атома урана имеет самую короткую длину волны 0,01259 нм. Поэтому можно полагать, что такая длина волны (частота) соответствует минимальному квантовому числу n = 1 и радиусу орбиты, то есть в соответствии с уравнением (4) для первой орбиты k = r. В свою очередь, зная длину волны λ, рассчитываем радиус по уравнениям 3-го закона Кеплера, которые применительно к атомным системам имеют вид:
λ= 2πcr1,5/(gmd)0,5, (9)
ν = (gmd)0,5/2πr1,5, (10)
где λ- длина волны, ν- частота излучения, с– скорость света, r– радиус орбиты, g– константа микро гравитации, m– атомная масса, d– дальтон.
Подставив в уравнение (9) приведенные выше значения величин, получим радиус первой орбиты атома урана, с которой происходит рентгеновское излучение серии Kα1, r = 0,069 пм. Радиусы других орбит рассчитываем по уравнению Бора (4) умножением на квадрат соответствующего орбите квантового числа, см. таблицу 1. Так, например, для следующей рентгеновской L серии при n = 2 получена длина волны λcal= 0,1011 нм при справочном значении λ exp = 0,07479 ни, а для М серии при n = 3 соответственно λcal = 0,3412 нм и λexp = 0,3329 нм. Для других серий при n = 4, 5, 6 и 7 также получено хорошее совпадение расчётных и экспериментальных данных, см. столбцы 6 и 7 в таблице 1.
Таблица1. Параметры атома урана.
Удовлетворительное совпадение также наблюдается для расчетных и экспериментальных значений атомных радиусов, характеризующих длину химических связей и размер атома, см. столбцы 2 и 3. Рассчитанные по уравнениям (1) и (2) длины связей равны 89,42 и 104,9 пм. Экспериментальные значения почти совпадают с этими величинами и равны соответственно 89 и 104 пм. Расчётная длина ковалентной связи равна 139,7 пм, экспериментальное СКАЧАТЬ