Intelligent Security Management and Control in the IoT. Mohamed-Aymen Chalouf
Чтение книги онлайн.

Читать онлайн книгу Intelligent Security Management and Control in the IoT - Mohamed-Aymen Chalouf страница 13

СКАЧАТЬ Vehicle mobility model Car Following Model Intelligent radio channels available TV white space bandWiFi white space bandLTE white space band

      For the vehicle behavior model, we have adopted the Car Following Model, which is based on the following parameters: vehicle acceleration, vehicle deceleration, vehicle length, maximum speed of the vehicle and driver imperfection. The values of these parameters are presented in Table 1.5.

      Based on the spectral resources detected, the suggested multicriteria decision-making module will calculate the scores of different channels and select the one with the highest score.

      Table 1.5. Simulation parameters for the SUMO vehicle

Parameters Values
Vehicle acceleration 2.5 m/s2
Vehicle deceleration 4.6 m/s2
Average vehicle length 5 m
Maximum vehicle speed 140 km/h
Driver imperfection 0.5
Graph depicts the variation of the scores of intelligent radio channels for the entertainment service.

      Figure 1.6. Variation of the scores of intelligent radio channels for the entertainment service

      In this chapter, we tackled the question of decision-making for effective access to a radio network or a spectrum band in the IoT. An IoT object, having several interfaces and/or with cognitive capacities, can detect several access networks or radio communication channels. Thus, it may be led to choose the access network or radio communication channel that best meets the QoS constraints of the IoT application as well as its energy constraints. Selecting the most appropriate network or radio communication channel will allow the object to remain best connected. In this chapter, we focused on the functioning of the multicriteria decision-making module that we have suggested to tackle the problem of scalability. However, many approaches (Lounis et al. 2012; Gia et al. 2015; Guo et al. 2017; Firouzi et al. 2018; Shrestha et al. 2018; Khan and Lee 2019) have been proposed to solve the scalability issues in an IoT system. In our context, this question remains very important. This is why we plan to study it in future work.

      Aijaz, A. and Aghvami, A.H. (2015). Cognitive machine-to-machine communications for Internet-of-Things: A protocol stack perspective. IEEE Internet of Things Journal, 2(2), 103–112.

      Akyildiz, I.F., Lee, W.-Y., Vuran, M.C., Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks Journal, 50(13), 2127–2159.

      Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M. (2015). Internet of Things: A survey on enabling technologies, protocols and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.

      Atzori, L., Iera, A., Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805.

      Carneiro, P., Fortuna, P., Ricardo, M. (2009). Flow monitor: A network monitoring framework for the network simulator 3 (NS-3). Proceedings of the 4th International ICST Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS ’09). doi:10.4108/ICST.VALUETOOLS2009.7493.

      Firouzi, F., Farahani, B., Ibrahim, M., Chakrabarty, K. (2018). Keynote paper: From EDA to IoTeHealth: Promises, challenges, and solutions. In IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. doi:10.1109/tcad.2018.2801227.

      Gia, T.N., Rahmani, A., Westerlund, T., Liljeberg, P., Tenhunen, H. (2015). Fault tolerant and scalable IoT-based architecture for health monitoring. In IEEE Sensors Applications Symposium (SAS). IEEE, Zadar.

      Grace, D., Chen, J., Jiang, T., Mitchell, P.D. (2009). Using cognitive radio to deliver “green” communications. In 2009 4th International Conference on Cognitive Radio Oriented Wireless Networks and Communications. IEEE, Hanover.

      Guo, H., Ren, J., Zhang, D., Zhang, Y., Hu, J. (2017). A scalable and manageable IoT architecture based on transparent computing. Journal of Parallel and Distributed Computing, 118(1) 5–13. doi:10.1016/j.jpdc.2017.07.003.

      Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

      Iqbal, J., Khan, M., Afaq, M., Ali, A. (2019). Performance analysis of vertical handover techniques based on IEEE 802.21: Media independent handover standard. Transactions on Emerging Telecommunications Technologies. doi:10.1002/ett.3695.

      Javed, M.A., Ngo, D.T., Khan, J.Y. (2014). Multimedia communication for emergency services in cooperative vehicular ad hoc networks. In Multimedia over Cognitive Radio Networks, Hu, F., Kumar, S. (eds). CRC Press, Boca Raton.

      Kassar, M., Kervella, B., Pujolle, G. (2008). An overview of vertical handover decision strategies in heterogeneous wireless networks. Journal of Computer Communications, 37(10), 2607–2620.

      Khan, U.A. and Lee, S.S. (2019). Multi-layer problems and solutions in VANETs: A review. Electronics 2019, 8, 204.

      Khan, A.A., Rehmani, M.H., Rachedi, A. (2016). When cognitive radio meets the Internet of Things? In 2016 International Wireless Communications and СКАЧАТЬ