Parasitology. Alan Gunn
Чтение книги онлайн.

Читать онлайн книгу Parasitology - Alan Gunn страница 17

Название: Parasitology

Автор: Alan Gunn

Издательство: John Wiley & Sons Limited

Жанр: Медицина

Серия:

isbn: 9781119641223

isbn:

СКАЧАТЬ often attributed to the direct pathogenic effect of the parasite, such as through the loss of blood and the destruction of tissues or competition for resources. For example, many gut helminths act as so‐called kleptoparasites (literally, thieving parasites) and compete with their host for nutrients within the gut lumen. However, the situation is far more complicated than this. Although a functional immune system is crucial for an organism to protect itself against pathogens, immune systems are energetically costly and when nutrients are limiting, it must trade these costs against other physiological processes. Ilmonen et al. (2000) demonstrated this by injecting one group of breeding female pied flycatchers (Ficedula hypoleuca) with a diphtheria‐tetanus vaccine and a control group with a saline solution. The vaccine was not pathogenic and did not induce an infection, but it activated the birds’ immune system. They found that birds injected with the vaccine exhibited a lower feeding effort, invested less in self‐maintenance and had a lower reproductive output, as determined by fledgling quality and number. The authors therefore concluded that the energetic consequences of activating the immune system can be sufficient to reduce the host’s breeding success.

      Hosts can be divided into classes, depending upon the role they play in the parasite’s life cycle. The ‘definitive’ (or final) host is the one in, or on, which the parasite reaches maturity and undergoes sexual reproduction, whilst the ‘intermediate’ host is the one in which the parasite undergoes its developmental stage(s). There may be just one or several intermediate hosts and the parasite may or may not undergo asexual reproduction during this time, but it cannot develop into an adult or reproduce sexually. In this way, some parasites exploit their hosts to maximum effect by combining the reproductive power of asexual reproduction in the larval stage with the advantages of sexual reproduction during the adult stage.

      Parasites of Parasites

      Viruses infect several parasitic protozoa such as Leishmania spp. (Rossi and Fasel 2018) and Giardia lamblia (Janssen et al. 2015) but, at the time of writing, there was surprisingly little evidence of their presence in helminths – though this is probably because few scientists have looked for them. Some workers suggest that viruses could be used to combat parasite infections (Hyman et al. 2013), but there is increasing evidence that many of the viruses found in parasitic protozoa contribute to their pathogenicity (Gómez‐Arreaza et al. 2017).

      Parasites are also infected by prokaryotic (e.g., bacteria) and eukaryotic (e.g., fungi and protozoa) parasites. Those parasites that infect other parasites are known as hyperparasites. For example, the microsporidian Nosema helminthorum is parasitic on the tapeworm Moniezia expansa that lives within the small intestine of sheep and goats (Canning and Gunn 1984). Sheep become infected by the tapeworm when they accidentally ingest oribatid mites containing the cysticercoids of M. expansa. Subsequently, the sheep must consume the infective cysts of N. helminthorum and these must then penetrate the tegument (tapeworms lack a gut of their own) of the tapeworm. Within the tapeworm, N. helminthorum reproduces and causes numerous raised opaque bleb‐like patches but is not especially pathogenic. Related microsporidia affect various other platyhelminth parasites (Canning 1975; Sokolova and Overstreet 2020), but there are remarkably few reports of them infecting parasitic nematodes (e.g., Kudo and Hetherington 1922). The discovery of microsporidia infecting the free‐living nematode Caenorhabditis elegans has opened the potential of developing a laboratory model for studying both nematode immunity and the biology of microsporidia (Zhang et al. 2016). This is because C. elegans is a commonly used model organism whose full genome is known. Several species of microsporidia cause pathogenic infections in humans and domestic animals and a simple laboratory model would prove extremely useful in the development of drug treatments etc.

Schematic illustration of life cycle of the nematode Capillaria hepatica illustrating the role of paratenic hosts in the transmission cycle.