Название: Neonatal Haematology
Автор: Irene Roberts
Издательство: John Wiley & Sons Limited
Жанр: Медицина
isbn: 9781119371496
isbn:
Red blood cell morphology
Even in freshly taken samples, the morphology of neonatal red blood cells is distinctly different to that of adult cells.35,78 The most typical morphological feature that differs from what is observed at other times of life is the presence of echinocytes (see Fig. 1.8). In healthy neonates, the proportion of echinocytes in blood films made from samples collected during the first week of life is inversely proportional to gestational age at birth. Echinocytes gradually disappear from the peripheral blood film over the first few weeks of life so that even very preterm neonates will have few circulating echinocytes by 4 weeks of age (Fig. 1.12). This, together with the universal presence of echinocytes in very preterm neonates, strongly suggests that the changes reflect the unique differences in the cell membrane and metabolism of fetal red blood cells. Indeed, echinocytes are not a useful indicator of red cell pathology in neonates. Instead, other morphological indicators of red cell pathology, such as spherocytes, elliptocytes, target cells and occasionally acanthocytes, are a more reliable diagnostic guide (see Chapter 2).
Table 1.4 Causes of increased numbers of circulating nucleated red blood cells (erythroblasts) in term and preterm neonates
Response to anaemia: haemolytic disorders |
Haemolytic disease of the newborn (especially due to anti‐D and anti‐c) |
α thalassaemia major (occasionally, haemoglobin H disease) |
Severe congenital dyserythropoietic anaemia (e.g. due to KLF1 mutations) |
Rare severe red cell enzyme deficiencies (e.g. pyruvate kinase deficiency or glucose phosphate isomerase deficiency) |
Rare severe red cell membranopathies (e.g. hereditary stomatocytosis or autosomal recessive hereditary spherocytosis) |
Response to anaemia: blood loss (mainly acute) |
Fetomaternal haemorrhage |
Placental abruption |
Large cephalohaematoma |
Haemorrhage into major organs, e.g. liver Twin‐to‐twin transfusion (donor twin) |
Response to hypoxia |
Chronic in utero hypoxia: |
Intrauterine growth restriction |
Maternal hypertension |
Maternal diabetes mellitus |
Down syndrome (mechanism unclear) |
Acute perinatal hypoxia: |
Hypoxic ischaemic encephalopathy (leucoerythroblastic) |
Neoplasms |
Transient abnormal myelopoiesis in Down syndrome* |
Congenital leukaemia (non‐Down syndrome) |
Other |
Recovery phase of parvovirus B19 infection |
* The increase in circulating erythroblasts is even higher in Down syndrome neonates with transient abnormal myelopoiesis than in Down syndrome neonates in general.
Fig. 1.10 Blood film showing features of hyposplenism resulting from intrauterine growth restriction: (a) low power showing anisocytosis, poikilocytosis, target cells and some fragments (MGG, ×40); (b) high power, two Howell–Jolly bodies are apparent (MGG, ×100).
Fig. 1.11 Blood film from a preterm neonate (born at 25 weeks’ gestation) on the day of birth showing a leucoerythroblastic picture with NRBC, a myelocyte and promyelocyte as well as toxic granulation of the neutrophils and red cell morphology typical of an extremely preterm neonate. This appearance is typical of perinatal hypoxia. MGG, ×100.
Fig. 1.12 Impact of postnatal age on red cell morphology; blood films from: (a) healthy term baby; (b) neonate at a postnatal age of 4 weeks. MGG, ×100.
The presence of a small proportion (typically <5%) of spherocytes and target cells in the first few days of life is normal, particularly in preterm babies, possibly reflecting a degree of functional hyposplenism in the neonate. Consistent with this, these features are more marked in neonates with IUGR, when they are usually accompanied by the presence of Howell–Jolly bodies34 (see Fig. 1.10). The presence of schistocytes in neonatal blood films may cause confusion. When they are present in large numbers in the first few days of life they may be an indicator of a microangiopathic process, as seen in disseminated intravascular coagulation (DIC), thrombotic thrombocytopenic purpura or Kasabach–Merritt syndrome. On the other hand, the presence of large numbers of schistocytes (10–20%) is very common in well babies for several months after the first few weeks of life (personal observation) and may simply reflect residual damaged fetal erythrocytes yet to be cleared from the circulation (see Fig. 1.12). Care should therefore be taken not to overestimate the significance of schistocytes in well СКАЧАТЬ