Название: ИИ-2041. Десять образов нашего будущего
Автор: Кай-фу Ли
Издательство: Манн, Иванов и Фербер
Жанр: Управление, подбор персонала
Серия: МИФ Бизнес
isbn: 9785001951711
isbn:
Преимущества страховки Ganesh Insurance из рассказа «Золотой слон», работающей на базе ИИ, совершенно очевидны. Рия, мама Наяны, экономит семейный бюджет благодаря акционным приложениям. Папа Санджай бросает курить, пить крепкое спиртное и становится более ответственным водителем. Даже младший брат Рохан начинает правильнее питаться, когда под угрозой диабета ИИ забил во все колокола.
Такой набор приложений, работающих на смартстримах (вы, конечно, поняли, что это смартфоны 2041 года), и вправду мог бы помочь людям жить дольше, быть здоровее и богаче. Персонализированные ненавязчивые стимулы четко подсказывают, как жить более правильной жизнью.
В чем же тут подвох? В том, как и чем приходится за это расплачиваться. Вопрос лег в основу нашей первой истории, познакомившей читателя с основополагающей для ИИ концепцией глубокого обучения.
Глубокое обучение – прорыв в области искусственного интеллекта. Среди многих подобластей ИИ машинное обучение – это область, которая привела к наиболее успешным приложениям, а в машинном обучении самым большим достижением является направление под названием «глубокое обучение» – настолько, что термины «ИИ», «машинное обучение» и «глубокое обучение» иногда используются взаимозаменяемо (хотя это и неточно). В 2016 году глубокое обучение вызвало ажиотаж после впечатляющей победы AlphaGo над конкурентом-человеком в игре го, самой популярной интеллектуальной настольной игре в Азии. После этого нашумевшего поворота глубокое обучение стало важной частью большинства коммерческих приложений ИИ, и оно фигурирует в большинстве историй в AI 2041.
В «Золотом слоне» описан потрясающий потенциал глубокого обучения и его ловушки вроде воспроизведения социальных предрассудков в цифровых технологиях.
Так что же такое глубокое обучение? Каковы его ограничения? Какую роль в нем играют данные? Почему интернет и финансы считаются наиболее перспективными отраслями для применения ИИ на ранних этапах? Какие условия оптимальны для глубокого обучения? И почему кажется, что это работает чертовски хорошо – но только когда оно действительно работает? Каковы недостатки и недочеты ИИ?
Глубокое обучение вдохновлено сложнейшей сетью нейронов нашего мозга, оно строит программные многослойные искусственные нейронные сети с входными, скрытыми и выходными слоями. Данные поступают на входной слой – вход, а результат, соответственно, появляется на выходном слое. Между ними могут находиться тысячи других скрытых слоев – отсюда и «глубокое обучение».
Многие считают, что ИИ «программируется» или «обучается» людьми посредством указания конкретных правил и действий. Например, человек сообщает ИИ, что «у кошек заостренные уши и усы». Но на самом деле глубокое обучение работает лучше без внешних «человеческих» правил. Вместо того чтобы запоминать правила, данные людьми, на вход глубокой нейросети подается множество примеров, а на выход – правильные ответы для каждого из них. СКАЧАТЬ