Continental Rifted Margins 1. Gwenn Peron-Pinvidic
Чтение книги онлайн.

Читать онлайн книгу Continental Rifted Margins 1 - Gwenn Peron-Pinvidic страница 21

Название: Continental Rifted Margins 1

Автор: Gwenn Peron-Pinvidic

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119986911

isbn:

СКАЧАТЬ href="#ulink_dc4685ea-c543-54cb-b521-71e23bfa94bf">Figure 1.33b). Extension is accommodated by both basinward- and landward-dipping normal faults, contraction is manifested by both salt-cored folds and thrust faults as well as the squeezing of diapirs and the translational province has both symmetric and asymmetric salt-evacuation structures. Relief on the base salt can generate ramp-syncline basins. Diapirs are triggered by various processes, and the salt may break out and laterally flow to form salt sheets and canopies.

      Further reading.– The above descriptions are abbreviated and often simplified. If interested in reading and learning further, the reader is referred to the following list of publications and references:

       – General: (Vendeville and Jackson 1992; Jackson and Vendeville 1994; Withjack and Callaway 2000; Jammes et al. 2010; Rowan 2014, 2020; Warren 2016; Jackson et al. 2020).

Schematic illustration of styles and features of rift-related salt tectonics. Schematic illustration of improvement of seismic imaging.

      Intrusive magmatic features refer to magmatic rocks emplaced in rocks that were previously in place. Depending on the emplacement geometry relative to the previous rocks, these intrusions can be concordant or discordant. Sills are tabular intrusions, emplaced between older layers, in a concordant intrusive sheet, while dikes are defined as discordant intrusive sheets that will crosscut older rocks. Sills are commonly fed by dikes. Additional intrusive magmatic bodies include the following: pluton, which refers to large intrusive bodies; batholiths, which are intrusive complexes of several magmatic bodies of large dimension (typically several plutons) and laccoliths, which are concordant plutons and form when the magmatic rocks are intruded between rock layers with high pressure, forcing an upward doming/folding of the overlying strata and giving rise to an overall mushroom-like form with a generally planar base.

      Extrusive magmatic features are magmatic rocks emplaced above the Earth’s surface, at the seafloor or at the surface. In rifted margins, these include a long series of possible features such as lava flows, lava deltas and volcanoes. Secondary geometries can also be generated, such as mass wasting events and volcanic-derived sediments. Their seismic reflection facies are often very well defined with typically high-amplitude reflectors; however, the conditions leading to their emplacement are still very much debated.

      Underplates refer to rocks that are emplaced as uniform bodies at the base of pre-existing rocks – usually below the lower crust in extended rifted margin settings. Field outcrops and deep-sea drilling observation prove the existence of underplated magmatic bodies. In modern rifted margins, however, these structures cannot be directly observed. Their presence has been proposed based on the interpretation of geophysical models, making them indirect observations. HVLC and LCB are widely used acronyms that refer to these particular bodies. HVLC is an abbreviation for “high velocity lower crust” and “LCB” for “lower crustal body” (see Chapter 2 for further explanation and discussion around these terms).

      We briefly list below the major magmatic geometries often encountered in distal rifted margin settings (Figure 1.35). We will follow the classification built on the West Indian margin case (Calvès et al. 2011) and descriptions of the Voring mid-Norwegian margin (Abdelmalak et al. 2016). Both are based on the early descriptions made by Symonds et al. (1998) and Planke et al. (2000):

      – SDRs (seaward dipping reflectors): these are a specific feature identified on seismic reflection profiles by a wedge-shape/fan-like geometry, opening and dipping oceanward with medium- to high-amplitude seismic reflectors (Mutter et al. 1982). The top continentward termination has been drilled (e.g. in the NE Atlantic; Eldholm et al. 1989) and the related strong reflectors have been proven to correspond to subaerially-erupted flood basalts. Thus, when identified in distal rifted margin settings, SDR-like seismic geometries are often interpreted as fully basaltic structures. However, no constraints exist on their internal lithologies, notably the ratio between sediments and magma. Based on their position, the packages are often distinguished into inner SDRs and outer SDRs, depending on whether they are located landward or oceanward from the outer high, respectively:

       - СКАЧАТЬ