Demystifying Research for Medical and Healthcare Students. John L. Anderson
Чтение книги онлайн.

Читать онлайн книгу Demystifying Research for Medical and Healthcare Students - John L. Anderson страница 18

Название: Demystifying Research for Medical and Healthcare Students

Автор: John L. Anderson

Издательство: John Wiley & Sons Limited

Жанр: Медицина

Серия:

isbn: 9781119701385

isbn:

СКАЧАТЬ could not be avoided – no matter what the dog did. They were inescapable – uncontrollable. Afterwards the dogs were put in a ‘shuttle box’ (Figure 2.5). This was a large box divided into two sections with a dog‐shoulder high barrier in the middle. The floor had a grid which could be electrified on either or both sides. Seligman (1975) eloquently describes his initial results.

       When placed in a shuttle box, an experimentally naïve dog, at the onset of the first electric shock, runs frantically about until it accidentally scrambles over the barrier and escapes the shock. On the next trial, the dog, running frantically, crosses the barrier more quickly than on the preceding trial; within a few trials it becomes very efficient at escaping, and soon learns to avoid shock altogether. After about fifty trials the dog becomes nonchalant and stands in front of the barrier; at the onset of the signal for shock it leaps gracefully across and never gets shocked again.

       A dog that had first been given inescapable shock showed a strikingly different pattern. This dog's first reactions to shock in the shuttle box were much the same as of a naïve dog; it ran about frantically for about thirty seconds. But then it stopped moving; to our surprise, it lay down and quietly whined. After one minute of this we turned the shock off; the dog had failed to cross the barrier and had not escaped from shock. On the next trial, the dog did it again; at first it struggled a bit, and then, after a few seconds, it seemed to give up and to accept the shock passively. On all succeeding trials, the dog failed to escape. This is the paradigmatic learned‐helplessness finding. (Seligman, 1975).

A photograph of Shuttlebox design.

      Seligman demonstrated from this and later work on human subject that learned helplessness saps the motivation to initiate responses; disrupts the ability to learn; and produces emotional disturbance. That is, it has three levels of effect:

       motivational

       cognitive

       emotional.

      He went on to show how this effected people in real life and that this could even be implicated in depression and death. Read his book Learned Helplessness: On Depression, Development, and Death (1975); in addition to being educational, it is a thoroughly good read!

      Note the sophistication of this design. Both the experimental group and the yoked group got exactly the same amount of the stressor (noise). The only difference was that the experimental group could control the situation – the yoked group could not. And the control group were not exposed to the stressor at all. Thus, any differences between the experimental group and the yoked control group could not be attributed to different exposures to the stressor. And the no‐noise control group acted as a group who received no stressor – that is, they acted as a group to check for any Hawthorne Effect!

      Note about Giving Electric Shocks to Student Subjects in Research

      It used to be widely accepted that low‐level electrical shocks which were painful, but did not cause actual damage, were permissible in research studies. When I started studying Psychology at Aberdeen, the former professor had been very much into research on learning. Legend has it that he gave his research subjects higher and higher levels of electric shocks in his experiments, until they began to refuse to take part in his research – even though it meant having to fail to meet the course requirements to take part in at least three experiments! So research which involved giving electric shocks to subjects was stopped.

      I have always been very impressed by Martin Seligman's work and was eager to do my own research on helplessness. So, when I was at the University of Hong Kong in the 1980s, I informed my staff in the Behavioural Sciences Unit in the Faculty of Medicine of my interests. Within a month, half of them had started doing their own work to replicate Seligman and Hiroto's work! My interests were in people's lifelong exposures to helplessness and how these might contribute to helpless characteristics – with the possible implications for survival from cardiovascular diseases and cancers. So, I set out on my quest. I was on ‘long leave’ in London. I had the necessary equipment built – a computerised control box, a set of headphones, and a four‐button board. I made announcements to medical students and asked for volunteers for my pilot study. I vividly remember my first two subjects.

      The first was in the control group – no matter what buttons he pressed, or in what order, or how many times, the noise could not be turned off and the red light would come on to signify failure. I remember him on the last of the 20 trials; he was bashing away at the buttons, frantically trying to find the correct sequence. Afterwards, I interviewed him about his life history of feeling in control or helpless. He was what you could call a ‘straight СКАЧАТЬ