Catalytic Asymmetric Synthesis. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Catalytic Asymmetric Synthesis - Группа авторов страница 68

Название: Catalytic Asymmetric Synthesis

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9781119736417

isbn:

СКАЧАТЬ of a chiral catalyst. In parallel with the development of new enantioselective reactions, various types of efficient chiral uncharged organobase catalysts have been designed and synthesized, which dramatically accelerated the progress. In particular, the new types of chiral organosuperbase catalysts possessing much higher basicity than that of conventional chiral tertiary amine catalysts have substantially expanded the scope of applicable pronucleophiles. Nevertheless, there is still a large room for improvement in this field. For instance, the development of chiral organosuperbase catalysts is still in its infancy, and the development of new catalysts, particularly with unprecedented catalyst design, is highly desirable to accomplish a variety of enantioselective transformations using a much broader range of pronucleophiles. On the other hand, the mechanism and the origin of the stereoselectivity have not been clarified in many reactions. Therefore, detailed mechanistic studies are also needed for a better understanding of the catalysis and the development of next generation of chiral catalysts and reaction systems. Further progress of the asymmetric Brønsted base catalysis is highly anticipated, which will find valuable applications in various fields of organic chemistry, such as natural product synthesis and drug discovery research.

      1 1. (a) Palomo, C.; Oiarbide, M.; López, R. Chem. Soc. Rev. 2009, 38, 632–653. (b) Superbases for Organic Synthesis: Guanidines, Amidines, Phosphazenes and Related Organocatalysts; Ishikawa, T., Ed.; John Wiley & Sons: Chichester, West Sussex, 2009. (c) Comprehensive Enantioselective Organocatalysis; Dalko, P. I. Ed.; Wiley‐VCH: Weinheim, 2013, pp 343–363.

      2 2. For pKBH+ values of organobases: (a) Tshepelevitsh, S.; Kütt, A.; LõKov, M.; Kaljurand, I.; Saame, J.; Heering, A.; Plieger, P. G.; Vianello, R.; Leito, I. Eur. J. Org. Chem. 2019, 6735–3748. (b) Schwesinger, R.; Schlemper, H.; Hasenfratz, C.; Willaredt, J.; Dambacher, T.; Breuer, T.; Ottaway, C.; Fletschinger, M.; Boele, J.; Fritz, H.; Putzas, D.; Rotter, H. W.; Boldwell, F. G.; Satish, A. V.; Ji, G.‐Z.; Peters, E. M.; Peters, K.; von Schnering, H. G.; Walz, L. Liebigs Ann. 1996, 1055–1081. (c) Kolomeitsev, A. A.; Koppel, I. A.; Rodima, T.; Barten, J.; Lork, E.; Röschenthaler, G.‐V.; Kaljurand, I.; Kütt, A.; Koppel, I.; Mäemets, V.; Leito, I. J. Am. Chem. Soc. 2005, 127, 17656–17666. Also see, refs 81 and 87.

      3 3. (a) Marcelli, T.; Hiemstra, H. Synthesis 2010, 1229–1279. (b) Yeboah, E. M. O.; Yeboah, S. O.; Singh, G. S. Tetrahedron 2011, 67, 1725–1762.

      4 4. (a) Leow, D.; Tan, C.‐H. Chem. Asian J. 2009, 4, 488–507. (b) Don, S.; Feng, X.; Liu, X. Chem. Soc. Rev. 2018, 47, 8525–8540. (c) Chou, H.‐C.; Leow, D.; Tan, C.‐H. Chem. Asian. J. 2019, 14, 3803–3822.

      5 5. (a) Krawczyk, H.; Dzięgielewski, M.; Deredas, D.; Albrecht, A.; Albrecht, Ł. Chem. Eur. J. 2015, 21, 10268–10277. (b) Teng, B.; Lim, W. C.; Tan, C.‐H. Synlett 2017, 28, 1272–1277. (c) Wang, Y.‐H.; Cao, Z.‐Y.; Li, Q.‐H.; Lin, G.‐Q.; Zhou, J.; Tian, P. Angew. Chem. Int. Ed. 2020, 59, 8004–8014.

      6 6. Catalytic Asymmetric Synthesis; Ojima, I. Ed.; John Wiley & Sons: New Jersey, 2010, pp 59–94.

      7 7. (a) Uraguchi, D.; Koshimoto, K.; Ooi, T. J. Am. Chem. Soc. 2008, 130, 10878–10879. (b) Uraguchi, D.; Oyaizu, K.; Ooi, T. Chem. Eur. J. 2012, 18, 8306–8309. (c) Zhang, W.‐Q.; Cheng, L.‐F.; Yu, J.; Gong, L.‐Z. Angew. Chem. Int. Ed. 2012, 51, 4085–4088. (d) Zhou, X.; Wu, Y.; Deng, L. J. Am. Chem. Soc. 2016, 138, 12297–12302.

      8 8. Kondoh, A.; Ishikawa, S.; Terada, M. J. Am. Chem. Soc. 2020, 142, 3724–3728.

      9 9. Wynberg, H. Topics in Stereochemistry 1986, 16, 87–129.

      10 10. Hiemsta, H.; Wynberg, H. J. Am. Chem. Soc. 1981, 103, 417–430.

      11 11. Grayson, M. N.; Houk, K. N. J. Am. Chem. Soc. 2016, 138, 1170–1173.

      12 12. Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672–12673.

      13 13. Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119–125.

      14 14. Hamza, A.; Schubert, G.; Soós, T.; Pápai, I. J. Am. Chem. Soc. 2006, 128, 13151–13160.

      15 15. Azuma, T.; Kobayashi, Y.; Sakata, K.; Sasamori, T.; Tokitoh, N.; Takemoto, Y. J. Org. Chem. 2014, 79, 1805–1817.

      16 16. (a) Miyabe, H.; Takemoto, Y. Bull. Chem. Soc. Jpn. 2008, 81, 785–795. (b) Fang, X.; Wang, C.‐J. Chem. Commun. 2015, 51, 1185–1197. (c) Gandhi, S.; Sivadas, V.; Baire, B. Eur. J. Org. Chem. 2021, 220–234. (d) Han, X.; Kwiatkowski, J.; Xue, F.; Huang, K.‐W.; Lu, Y. Angew. Chem. Int. Ed. 2009, 48, 7604–7607. (e) Probst, N.; Madarász, Á.; Valkonen, A.; Pápai, I.; Rissanen, K.; Neuvonen, A.; Pihko, P. M. Angew. Chem. Int. Ed. 2012, 51, 8495–8499. (f) Yang, C.; Zhang, E.‐G.; Li, X.; Cheng, J.‐P. Angew. Chem. Int. Ed. 2016, 55, 6506–6510.

      17 17. (a) Zhu, Y.; Malerich, J. P.; Rawal, V. H. Angew. Chem. Int. Ed. 2010, 49, 153–156. (b) Rombola, M.; Sumaria, C. S.; Montgomery, T. D.; Rawal, V. H. J. Am. Chem. Soc. 2017, 139, 5297–5300. (c) Kimmel, K. L.; Robak, M. T.; Ellman, J. A. J. Am. Chem. Soc. 2009, 131, 8754–8755. (d) Kimmel, K. L.; Weaver, J. D.; Lee, M.; Ellman, J. A. J. Am. Chem. Soc. 2012, 134, 9058–9061. (e) Inokuma, T.; Furukawa, M.; Uno, T.; Suzuki, Y.; Yoshida, K.; Yano, Y.; Matsuzaki, K.; Takemoto, Y. Chem. Eur. J. 2011, 17, 10470–10477.

      18 18. (a) Li, B.‐J.; Jiang, L.; Liu, M.; Chen, Y.‐C.; Ding, L.‐S.; Wu, Y. Synlett 2005, 603–606. (b) Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Org. Lett. 2005, 7, 1967–1969. (c) McCooey, S. H.; Connon, S. J. Angew. Chem. Int. Ed. 2005, 44, 6367–6370. (d) Ye, J.; Dixon, D. J.; Hynes, P. S. Chem. Commun. 2005, 4481–4483.

      19 19. (a) Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416–14417. (b) Zhu, Q.; Lu, Y. Angew. Chem. Int. Ed. 2010, 49, 7753–7756. (c) Ding, M.; Zhou, F.; Liu. Y.‐L.; Wang, C.‐H.; Zhao, X.‐L.; Zhou, J. Chem. Sci. 2011, 2, 2035–2039. (d) Urruzuno, I.; Mugica, O.; Oiarbide, M.; Palomo, C. Angew. Chem. Int. Ed. 2017, 56, 2059–2063. (e) Arai, R.; Hirashima, S.; Kondo, J.; Nakashima, K.; Koseki, Y.; Miura, T. Org. Lett. 2018, 20, 5569–5572.

      20 20. (a) Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Adv. Synth. Catal. 2015, 357, 253–281. (b) Mukhopadhyay, S.; Gharui, C.; Pan, S. C. Asian J. Org. Chem. 2019, 8, 1970–1984. (c) Hou, X.‐Q.; Du, D.‐M. Adv. Synth. Catal. 2020, 362, 4487–4512.

      21 21. Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004, 126, 9906–9907.

      22 22. Saaby, S.; Bella, M.; Jørgensen, K. A. J. Am. Chem. Soc. 2004, 126, 8120–8121.

      23 23. Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.; Foxman, B. M.; Deng, L. Angew. Chem. Int. Ed. 2005, 44, 105–108.

      24 24. Marcelli, T.; Haas, R. N. S.; Maarseveen, J. H.; Hiemstra, H. Angew. Chem. Int. Ed. 2006, 45, 929–931.

      25 25. Xiao, X.; Xie, Y.; Su, C.; Liu, M.; Shi, Y. J. Am. Chem. Soc. 2011, 133, 12914–12917.

      26 26. Tan, B.; Hernández‐Torres, G.; Barbas III, C. F. Angew. Chem. Int. Ed. 2012, 51, 5381–5385.

      27 27. Bae, H. Y.; Sim, J. H.; Lee, J.‐W.; List, B.; Song, C. E. Angew. Chem. Int. Ed. 2013, 52, 12143–12147.

      28 28. (a) Clerici, P.; Wennemers, H. Org. Biomol. Chem. 2012, 10, 110–113. (b) Bahlinger, A.; Fritz, S. P.; Wennemers, H. Angew. Chem. Int. Ed. 2014, 53, 8779–8783. (c) Engl, O. D.; Fritz, S. P.; Wennemers, H. Angew. Chem. Int. Ed. 2015, 54, 8193–8197.

      29 29. (a) Saadi, J.; Wennemers, H. Nature Chem. 2016, 8, 276–280. (b) Cosimi, E.; Engl, O. D.; Saadi, J.; Ebert, M.‐O.; Wennemers, H. Angew. Chem. Int. Ed. 2016, 55, 13127–13131.

      30 30. СКАЧАТЬ