A Course in Luminescence Measurements and Analyses for Radiation Dosimetry. Stephen W. S. McKeever
Чтение книги онлайн.

Читать онлайн книгу A Course in Luminescence Measurements and Analyses for Radiation Dosimetry - Stephen W. S. McKeever страница 18

СКАЧАТЬ affects the optical and electronic properties of the material and moving electronic charges also cause subsequent changes to the polarization and displacements (Hayes and Stoneham 1985).

      Figure 2.2 (a) An idealized lattice for an ionic crystal of the type A+B. (b) Stylized polarization effects caused by the substitution of an A+ ion with a divalent impurity ion X2+.

      The conclusion from these considerations is that a “point” defect in a lattice can exert influence over several lattice spacings and, in the certain cases, over several thousand surrounding host ions. Indeed, a “point defect” is not a “point” at all (Townsend 1992).

      Figure 2.4 (a) Schematic view of a LiF lattice with Mg2+ impurity substituting for a Li+ host ion and charge compensated by a Li-vacancy in a <110> direction, forming a dipolar complex; (b) example trimer cluster of three Mg2+-Livac dipoles.

      An additional consideration, not indicated in the conceptual Figures 2.2 and 2.4, is that the radius of the impurity ions generally do not match those of the host ions for which they substitute. For example, the radius of a Mg2+ ion is 86×10–12 m, whereas the radius of Li+ is 90×10–12 m. This small change in radius (<5%) causes a much larger change in ionic volume in that part of the lattice and substituting a Li+ ion with a Mg2+ ion results in a decrease of ionic volume by ~15%. Similarly, Ti4+ results in a ~76% volume decrease, while Y3+ in CaF2 causes a ~69% decrease when substituting for Ca2+. These effects immediately cause lattice distortions over and above distortions due to coulombic forces.1

      It is the breakdown in the lattice periodic potential caused by defects that gives rise to energy levels within the forbidden gap. The wavefunctions of electrons in a crystal with perfect periodicity are delocalized and extend throughout the material. States where the electron wavefunction is localized are not allowed. It is when the periodicity breaks down due to the presence of a defect that localized wavefunctions occur. These decay with distance away from the center of the defect over several lattice sites and the corresponding energies reside within the band gap.

      Whether they are relatively simple defects or complex defects, interactions between the localized electrons and holes can take place either, or both, non-locally (i.e. via the delocalized bands) or locally (e.g. tunneling of charge between localized states) depending upon both the energy and the spatial association between the defects. The energy levels may be discrete (i.e. characterized by a single energy value) or, because of their complexity, can be distributed in energy with the exact energy value depending upon the nature of the surrounding environment and the presence of other defects. This is especially true of non-crystalline materials such as glasses, in which the surrounding lattice may display short- or long-range disorder, resulting in a range of energies for a particular defect type.

      2.1.2 Extended Defects

      In addition to point defects, one can also add even more complex defects consisting of line dislocations (boundaries between slipped and un-slipped lattice planes), grain boundaries, angular misfits between lattice planes, planar dislocations (internal surfaces), nanoparticle formations, inclusions, and precipitates. Another obvious cause of the breakdown in the periodicity of a lattice is the presence of a surface. Crystals are not infinitely large and at a surface the lattice periodicity ends abruptly giving rise to broken bonds and bonds passivated by the possible presence of foreign atoms, resulting in large concentrations of localized levels at the surface. Clearly, powdered materials with small grain sizes and large surface-to-volume ratios are more likely to exhibit effects due to surface states than larger, bulk materials.

      2.1.3 Non-Crystalline Materials