Pricing Insurance Risk. Stephen J. Mildenhall
Чтение книги онлайн.

Читать онлайн книгу Pricing Insurance Risk - Stephen J. Mildenhall страница 18

Название: Pricing Insurance Risk

Автор: Stephen J. Mildenhall

Издательство: John Wiley & Sons Limited

Жанр: Банковское дело

Серия:

isbn: 9781119756521

isbn:

СКАЧАТЬ Study, gross (top) and net (bottom) densities on a nominal (left) and log (right) scale.

      Figure 2.7 Hu/SCS Case Study, bivariate densities: gross (left), net (center), and a sample from gross (right). Impact of reinsurance is clear in net plot.

      We strongly recommend that the reader reproduce the Examples and Cases. We suggest a general-purpose programming language such as R or Python, although SQL or even a spreadsheet suffices, with a bit of ingenuity. See Section 2.4.5 for a discussion of the implementation we used.

      2.4.1 The Simple Discrete Example

      Exercise 1

      Recreate Table 2.2 in a spreadsheet (or R or Python). Compute and plot the distribution and survival functions, Pr(X≤x) and Pr(X>x) for X.

      Solution. Since the data is discrete, the answers are step functions. The survival function is

      upper S left-parenthesis x right-parenthesis equals StartLayout Enlarged left-brace 1st Row 1st Column 0.75 2nd Column 0 less-than-or-equal-to x less-than 1 2nd Row 1st Column 0.625 2nd Column 1 less-than-or-equal-to x less-than 8 3rd Row 1st Column 0.5 2nd Column 8 less-than-or-equal-to x less-than 9 4th Row 1st Column 0.4375 2nd Column 9 less-than-or-equal-to x less-than 10 5th Row 1st Column 0.3125 2nd Column 10 less-than-or-equal-to x less-than 11 6th Row 1st Column 0.25 2nd Column 11 less-than-or-equal-to x less-than 90 7th Row 1st Column 0.125 2nd Column 90 less-than-or-equal-to x less-than 98 8th Row 1st Column 0.0625 2nd Column 98 less-than-or-equal-to x less-than 100 9th Row 1st Column 0 2nd Column 100 less-than-or-equal-to x period EndLayout (2.1)

X1 X2 X P(X1) P(X2) P(X)
0 0 0 1/2 1/2 1/4
0 1 1 1/2 1/4 1/8
0 90 90 1/2 1/4 1/8
8 0 8 1/4 1/2 1/8
8 1 9 1/4 1/4 1/16
8 90 98 1/4 1/4 1/16
10 0 10 1/4 1/2 1/8
10 1 11 1/4 1/4 1/16
10 90 100 1/4 1/4 1/16
Gross Net
Statistic X1 X2 Total X1 X2 Total
Mean 4.500 22.750 27.250 4.500 5.250 9.750
CV 1.012 1.707 1.435 1.012 1.624 0.991
Skewness 0.071 1.154 1.131 0.071 1.147 0.794
Kurtosis −1.905 −0.667 −0.649 −1.905 −0.673 −0.501

      2.4.2 Tame Case Study

СКАЧАТЬ