Control Theory Applications for Dynamic Production Systems. Neil A. Duffie
Чтение книги онлайн.

Читать онлайн книгу Control Theory Applications for Dynamic Production Systems - Neil A. Duffie страница 15

СКАЧАТЬ rel="nofollow" href="#fb3_img_img_5657a54c-c424-5146-95cc-0cab4f2132a0.png" alt="r Subscript p Baseline left-parenthesis left-parenthesis k plus d right-parenthesis upper T right-parenthesis equals r Subscript f Baseline left-parenthesis k upper T right-parenthesis"/>

      where dT days is the delay in implementing permanent worker capacity adjustments. Hence, the portions of fluctuating order input that are addressed by permanent worker capacity rp(kT) orders/day and cross-trained capacity rc(kT) orders/day are

r Subscript p Baseline left-parenthesis left-parenthesis k plus d right-parenthesis upper T right-parenthesis equals alpha r Subscript i Baseline left-parenthesis k upper T right-parenthesis plus left-parenthesis 1 minus alpha right-parenthesis r Subscript p Baseline left-parenthesis left-parenthesis k minus 1 plus d right-parenthesis upper T right-parenthesis r Subscript c Baseline left-parenthesis k upper T right-parenthesis equals r Subscript i Baseline left-parenthesis k upper T right-parenthesis minus r Subscript p Baseline left-parenthesis k upper T right-parenthesis

      2.4 Model Linearization

      A component behaves in a linear manner if input x1 produces output y1, input x2 produces output y2, and input x1 + x2 produces output y1 + y2. The following are examples of linear relationships:

y left-parenthesis t right-parenthesis equals upper K x left-parenthesis t right-parenthesis StartFraction d y left-parenthesis t right-parenthesis Over d t EndFraction equals upper K x left-parenthesis t right-parenthesis y left-parenthesis left-parenthesis k plus 1 right-parenthesis upper T right-parenthesis equals upper K x left-parenthesis k upper T right-parenthesis

      The following are examples of nonlinear relationships:

y left-parenthesis t right-parenthesis equals upper K x left-parenthesis t right-parenthesis v left-parenthesis t right-parenthesis StartFraction d y left-parenthesis t right-parenthesis Over d t EndFraction equals upper K x left-parenthesis t right-parenthesis squared y left-parenthesis left-parenthesis k plus 1 right-parenthesis upper T right-parenthesis equals upper K x left-parenthesis k upper T right-parenthesis left-parenthesis 1 minus x left-parenthesis left-parenthesis k minus 1 right-parenthesis upper T right-parenthesis right-parenthesis Start 3 By 1 Matrix 1st Row upper K x left-parenthesis t right-parenthesis greater-than-or-equal-to y Subscript m a x Baseline colon y left-parenthesis t right-parenthesis equals y Subscript m a x Baseline 2nd Row y Subscript m i n Baseline less-than upper K x left-parenthesis t right-parenthesis less-than y Subscript m a x Baseline colon y left-parenthesis t right-parenthesis equals upper K x left-parenthesis t right-parenthesis 3rd Row upper K x left-parenthesis t right-parenthesis less-than-or-equal-to y Subscript m i n Baseline colon y left-parenthesis t right-parenthesis equals y Subscript m i n Baseline EndMatrix

      2.4.1 Linearization Using Taylor Series Expansion – One Independent Variable

      A nonlinear function f(x) of one variable x can be expanded into an infinite sum of terms of that function’s derivatives evaluated at operating point xo:

      f left-parenthesis x right-parenthesis equals f left-parenthesis x Subscript o Baseline right-parenthesis plus StartFraction 1 Over 1 factorial EndFraction left-parenthesis x minus x Subscript o Baseline right-parenthesis StartFraction d f Over d x EndFraction Math bar pipe bar symblom Subscript x Sub Subscript o Subscript Baseline plus StartFraction 1 Over 2 factorial EndFraction left-parenthesis x minus x Subscript o Baseline right-parenthesis squared StartFraction d squared f Over d x squared EndFraction Math bar pipe bar symblom Subscript x Sub Subscript o Subscript Baseline plus ellipsis (2.1)

      xo is the operating point about which the expansion made. Over some range of (xxo) higher-order terms can be neglected, and the following linear model in the vicinity of the operating point is a sufficiently good approximation of the function:

      where

      Such an approximation is illustrated in Figure 2.14.

      Figure 2.14 Linear approximation of function f(x) at operating point xo.

      A production work system such as that illustrated in Figure 2.15 has constant work in progress (WIP) w hours and variable production capacity r(t) hours/day. The lead time l(t) hours then is approximately

      Figure 2.15 Production work system with variable capacity.

l left-parenthesis t right-parenthesis almost-equals StartFraction w Over r left-parenthesis t right-parenthesis EndFraction

      The relationship between lead time and capacity is nonlinear; however, a linear approximation of this relationship in the vicinity of operating point ro can be obtained using Equations 2.2 and 2.3:

StartFraction d l Over d r EndFraction Math bar pipe bar symblom Subscript r Sub Subscript o Subscript Baseline equals minus StartFraction w Over r Subscript 
              <a href=СКАЧАТЬ