Large Animal Neurology. Joe Mayhew
Чтение книги онлайн.

Читать онлайн книгу Large Animal Neurology - Joe Mayhew страница 82

Название: Large Animal Neurology

Автор: Joe Mayhew

Издательство: John Wiley & Sons Limited

Жанр: Биология

Серия:

isbn: 9781119477198

isbn:

СКАЧАТЬ Barakzai SZ, Dixon PM, Hawkes CS, Cox A and Barnett TP. Upper esophageal incompetence in five horses after prosthetic laryngoplasty. Vet Surg 2015; 44(2): 150–155.

      2 2 Broekman LEM and Kuiper D. Megaesophagus in the horse. A short review of the literature and 18 own cases. Vet Q 2002; 24(4): 199–202.

      3 3 Mullen KR, Rivera BN, Tidwell LG, et al. Environmental surveillance and adverse neonatal health outcomes in foals born near unconventional natural gas development activity. Sci Total Environ 2020; 731: 138497.

      4 4 Giguère S, Weber EJ and Sanchez LC. Factors associated with outcome and gradual improvement in survival over time in 1065 equine neonates admitted to an intensive care unit. Equine Vet J 2017; 49(1): 45–50.

      5 5 Toribio RE. Equine Neonatal encephalopathy: facts, evidence, and opinions. Vet Clin North Am Equine Pract 2019; 35(2): 363–378.

      6 6 Komine M, Langohr IM and Kiupel M. Megaesophagus in Friesian horses associated with muscular hypertrophy of the caudal esophagus. Vet Pathol 2014; 51(5): 979–985.

      7 7 Ploeg M, Grone A, Saey V, et al. Esophageal dysfunction in friesian horses: morphological features. Vet Pathol 2015; 52(6): 1142–1147.

      8 8 Wooldridge AA, Eades SC, Hosgood GL and Moore RM. in vitro effects of oxytocin, acepromazine, detomidine, xylazine, butorphanol, terbutaline, isoproterenol, and dantrolene on smooth and skeletal muscles of the equine esophagus. Am J Vet Res 2002; 63(12): 1732–1737.

      9 9 Johnstone LK, Engiles JB, Aceto H, et al. Retrospective evaluation of horses diagnosed with neuroborreliosis on postmortem examination: 16 cases (2004–2015). J Vet Intern Med 2016; 30(4): 1305–1312.

      10 10 Green EM, Roth JE and McClure RC. Recurrent esophageal obstruction in the horse: neurologic considerations. 32nd Ann Conf Am Assoc Equine Pract 1986.

Schematic illustration of the anatomy of a horse depicting paryngeal paresis and paralysis.

      This is a common idiopathic disorder in most tall horses of light breed, warmblood, and draft breeds in which Wallerian‐like neuronal fiber degeneration and attempts at reinnervation occur in the recurrent laryngeal nerve (rln), the left far more so than the right, and as such is referred to as recurrent laryngeal neuropathy (RLN). These horses have degrees of neurogenic muscle atrophy in the intrinsic laryngeal muscles innervated by the rln, and a small proportion used for some kind of athletic performance will demonstrate an inspiratory noise, roaring, and/or curtailed performance at exercise.1–3

      Clinical evaluation of cases of RLN has been standardized by use of endoscopy during high‐speed treadmill and overground exercise, and relatively successful surgical procedures are available for palliative treatment of the condition. Denervation potentials can be recorded in left laryngeal muscles, slowing of the thoracolaryngeal response can be identified and longer left rln conduction latency (viz. reduced velocity) can be calculated with electrodiagnostic equipment, none of which really add to diagnostic accuracy and prognosis for RLN (see Chapter 38).

      In addition to cases of idiopathic RLN, about 5–10% of cases of equine laryngeal paresis or paralysis have a detectable cause.4 Non‐RLN laryngeal paralysis may be a sequel to localized injury to the vagus or recurrent laryngeal nerves such as guttural pouch mycosis, rupture of the rectus capitis ventralis muscles, temporohyoid fracture, retropharyngeal abscessation, perivascular/perineural cervical injection reaction, inadvertent ventral neck intraoperative nerve damage, and retropharyngeal and cranial thoracic neoplasia. Non‐RLN paralysis may also be a manifestation of myopathy and polyneuropathy including neuroborreliosis.5 Bilateral laryngeal paralysis,6 which is considerably less common (2–6%) than unilateral paralysis, almost invariably results from generalized neuromuscular dysfunction such as hepatoencephalopathy7–9 and hyperkalemic periodic paresis. A similar array of disorders is likely associated with non‐RLN laryngeal paralysis in other large animal species.10

      Pyrrolizidine alkaloid‐associated liver failure with hepatic encephalopathy frequently results in bilateral laryngeal paralysis with loud inspiratory stridor occurring at rest or with minimal exercise.7–9 The laryngeal paralysis may be temporary, worsening during exacerbations of encephalopathy and resolving with the restoration of hepatic function. No gross or histopathological abnormalities have been identified in laryngeal muscles, rln, and other peripheral nerves of affected horses. Thus, the laryngeal paralysis of liver failure in horses may reflect neuromuscular dysfunction rather than an axonopathy or myelinopathy.

      Uncommonly, following general anesthesia, horses may develop postanesthetic laryngeal paralysis with variable recovery of laryngeal function. This may result from excessive head and neck extension compromising nerve blood flow or from compression and/or stretching of the recurrent laryngeal nerve over a rigid structure in the neck. Myopathy, persistent hypoxia, and pre‐existing laryngeal dysfunction are additional factors that may contribute to the development of this complication.

      Several toxic peripheral neuropathies cause equine laryngeal paralysis including intermediate and delayed organophosphate induced toxicity,11–13 pasture‐associated stringhalt, lead poisoning, ingestion of Lathyrus spp. and Cicer arietinum (chick pea), and other plant poisonings, all with evidence of a generalized disorder that affects multiple nerves and so presents little diagnostic problem. Finally, a syndrome of bilateral rln neuropathy can accompany the more general lesions of copper deficiency, at least in goats.14

      As an aside, diaphragmatic paralysis can be mentioned here as a very unusual neurologic disease resulting in variable signs of respiratory distress with no evidence of respiratory tract obstruction or of pulmonary lesions and can result from mid cervical (C3‐5) spinal cord or bilateral nerve root, or phrenic nerve, or diaphragmatic muscle lesions. Abdominal collapse during inspiration and thoracic expansion, is the characteristic syndrome.15–19

      1 1 Dixon PM, Robinson E and Wade JF. Equine recurrent laryngeal neuropathy. Havemeyer Foundation Monograph Series No. 11: R & W Publications. 2004.

      2 2 Draper ACE and Piercy RJ. Pathological classification of equine recurrent laryngeal neuropathy. J Vet Intern Med 2018; 32(4): 1397–1409.

      3 3 Parente EJ. Fifty years of recurring struggles with recurrent laryngeal neuropathy. Equine Vet J 2018; 50(2): 155–158.

      4 4 СКАЧАТЬ