Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Big Data Analytics and Machine Intelligence in Biomedical and Health Informatics - Группа авторов страница 15

СКАЧАТЬ Hadoop Map Reduce, an open-source distributed data processing platform that makes use of massive parallel processing (MPP). These applications should enable data mining techniques to be applied to these heterogeneous and complex data in order to uncover hidden patterns and novel knowledge. Recent advancements in processor technology, newer types of memories, and network architecture will reduce the time required to transfer data from storage to the processor in a distributed environment.

      1. Manogaran, G., Lopez, D., Thota, C., Abbas, K.M., Pyne, S., Sundarasekar, R., Big data analytics in healthcare internet of things, in: Innovative healthcare systems for the 21st century, pp. 263–284, Springer International Publishing, 2017.

      2. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W. et al., Initial sequencing and analysis of the human genome, Nature, 409, 6822, 2001.

      4. Hood, L. and Friend, S.H., Predictive, personalized, preventive, participatory (p4) cancer medicine. Nat. Rev. Clin. Oncol., 8, 3, 184–187, 2011.

      5. Chen, R., Mias, G.I., Li-Pook-Than, J., Jiang, L., Lam, H.Y.K., Chen, R., Miriami, E., Karczewski, K.J., Hariharan, M., Dewey, F.E. et al., Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell, 148, 1293–1307, 2012.

      6. Fernald, G.H., Capriotti, E., Daneshjou, R., Karczewski, K.J., Altman, R.B., Bioinformatics challenges for personalized medicine. Bioinformatics, 27, 13, 1741–1748, 2011.

      7. Cvach, M., Monitor alarm fatigue: An integrative review. Biomed. Instrum. Technol., 46, 4, 268–277, 2012.

      8. Drew, B.J., Harris, P., Z`egre-Hemsey, J.K., Mammone, T., Schindler, D., Salas-Boni, R., Bai, Y., Tinoco, A., Ding, Q. and Hu, X., Insights into the problem of alarm fatigue with physiologic monitor devices: A comprehensive observational study of consecutive intensive care unit patients. PloS One, 9, 10, e110274, 2014.

      9. Graham, K.C. and Cvach, N., Monitor alarm fatigue: Standardizing use of physiological monitors and decreasing nuisance alarms. Am. J. Crit. Care, 19, 1, 28–34, 2010.

      10. Rothschild, J.M., Landrigan, C.P., Cronin, J.W., Kaushal, R., Lockley, S.W., Burdick, E., Stone, P.H., Lilly, C.M., Katz, J.T., Czeisler, C.A. et al., The critical care safety study: The incidence and nature of adverse events and serious medical errors in intensive care. Read Online: Crit. Care Med.—Soc. Crit. Care Med., 33, 8, 1694–1700, 2005.

      11. Carayon, P. and G¨urses, A.P., A human factors engineering conceptual framework of nursing workload and patient safety in intensive care units. Intensive Crit. Care Nurs., 21, 5, 284–301, 2005.

      12. Carayon, P., Human factors of complex sociotechnical systems. Appl. Ergon., 37, 4, 525–535, 2006.

      13. Baxter, J.S.H., Gibson, E., Eagleson, R., Peters, T.M., The semiotics of medical image segmentation. Med. Image Anal., 44, 54–71, 2018.

      14. Seibert, J.A., Modalities and data acquisition, in: Practical Imaging Informatics, pp. 49–66, Springer, New York, 2009.

      15. Oyelade, J., Soyemi, J., Isewon, I., and Obembe, O., Bioinformatics, healthcare informatics and analytics: An imperative for improved healthcare system. Int. J. Appl. Inf. Syst., 13, 5, 1–6, 2015.

      16. Kannampallil, T.G., Franklin, A., Cohen, T., Buchman, T.G., Sub-optimal patterns of information use: A rational analysis of information seeking behavior in critical care, in: Cognitive Informatics in Health and Biomedicine, pp. 389–408, Springer, London, 2014.

      18. Gillum, R.F., From papyrus to the electronic tablet: A brief history of the clinical medical record with lessons for the digital age. Am. J. Med., 126, 10, 853–857, 2013.

      19. Reiser, S.J., The clinical record in medicine part 1: Learning from cases. Ann. Intern. Med., 114, 10, 902–907, 1991.

      20. Wu, P.-Y., Cheng, C.-W., Kaddi, C.D., Venugopalan, J., Hoffman, R., Wang, M.D., -omic and electronic health record big data analytics for precision medicine. IEEE Trans. Biomed. Eng., 64, 2, 263–273, 2016.

      21. Luo, J., Wu, M., Gopukumar, D., Zhao, Y., Big data application in biomedical research and healthcare: A literature review. Biomed. Inform. Insights, 8, BII–S31559, 2016.

      22. Archenaa, J. and Anita, E.A.M., A survey of big data analytics in healthcare and government. Proc. Comput. Sci., 50, 408–413, 2015.

      23. Viceconti, M. and Hunter, P., and Hose, R., Big data, big knowledge: Big data for personalized healthcare. IEEE J. Biomed. Health Inform., 19, 4, 1209–1215, 2015.

      1 *Email: [email protected]

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7Sl6UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAPcAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAoAQQBkAG8AYgBlACAA UABEAEYAAAAAAA9wcmludFByb29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAA AAAAAApwcm9vZlNldHVwAAAAAQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZD TVlLADhCSU0EOwAAAAACLQAAABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABD cHRuYm9vbAAAAAAAQ2xicmJvb2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jv b2wAAAAAAExibHNib29sAAAAAABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAA AABCY2tnT2JqYwAAAAEAAAAAAABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBk b3ViQG/gAAAAAAAAAAAAQmwgIGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAA AABCbGQgVW50RiNSbHQAAAAAAAAAAAAAAAB
СКАЧАТЬ