Plastics and the Ocean. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Plastics and the Ocean - Группа авторов страница 24

Название: Plastics and the Ocean

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Химия

Серия:

isbn: 9781119768418

isbn:

СКАЧАТЬ minimal introduction to allow readers who are not familiar with plastics to better appreciate the following chapters. Feedstock for polyolefin production are gaseous chemicals, called monomers, that are derived from oil, natural gas, or coal. Generally, a distilled fraction of oil, such as naphtha, is thermally cracked into these olefin monomers. Hydrocarbons in natural gas can also be converted to olefins; alternatively, biomass‐derived ethanol can also be converted into ethylene for use as a monomer. The ethylene made by any of these processes is polymerized using specialized catalyst systems,such as the Ziegler‐Natta or metallocene catalysts, to obtain olefin polymers with closely controlled molecular weight, chain geometry, and crystallinity. Pressure and temperature are the key variables that determine the structure and properties of the resin formed. The reaction is a catalyzed free‐radical polymerization, but several different reactor technologies, such as autoclaves, tubular reactors, stirred tanks, and fluidized bed reactors, are generally used in the manufacture of polyolefin resins. Mostly the same types of reactors are used in the manufacture of PP as well. Styrene monomer used in the manufacture of PS by free‐radical polymerization is a liquid, allowing emulsion polymerization in the liquid phase. The result of this resin manufacturing process are the virgin plastic pellets used by processors who convert these into useful plastic products.

      An important part of this latter operation is ‘compounding’, where the plastic is melted and intimately mixed with chemical compounds called additives, meant to improve the properties of the plastics to obtain their best performance in the intended product (see Chapter 2). Mixing can be conveniently carried out in a compounding extruder at a temperature high enough to melt the plastic. The compounded plastic is then used to mold products by one of many techniques, the ones popular with thermoplastics being injection molding, extrusion, and blow molding. These approaches do not work well with thermoset plastics that need to be compression molded.

Schematic illustration of a plot of the GWP (kg CO2-e) versus Embodied Energy (GJ) per 1000 kg of common plastics.
Plastic Water (L) Acidification (kg SO2‐e) Eutrophication (kg N‐e) Ozone Depletn. (kg CFC‐11‐e) Smog (kgO3‐e)
HDPE 8143 5.22 0.26 12 × 106 129
LDPE 11553 6.54 0.30 1.3 × 106 148
LLDPE 7383 4.69 0.25 1.2 × 106 125

      Based on American Chemical Council/Franklin Associates.

      Structurally, all polymers have very long chain‐like molecules but their chemical formulae are relatively simple because often, the same structural unit repeats throughout the long molecular chain. For instance, polyethylene (PE), the plastic manufactured in the highest volume globally, has a long structural formula, a part of which may looks like the following:

Schematic illustration of the structure of a polymer.

      It is merely a repetition of (‐CH2‐CH2‐) units placed end to end. Its structural formula is therefore, conveniently written as (‐CH2‐CH2) n , where n is the number of repeat units in the chain molecule, that can run into hundreds or thousands. As each repeat unit has a molecular weight of 28 (g/mol), that of the entire molecule is (28 × n) g/mol. Regardless of the length of the chain molecule, chemically, it is still a polyethylene. Since all PE molecules will not have identical chain lengths but different values of n, there is no unique molecular weight for polyethylene or for any other polymer (in contrast with simple organic molecule that have fixed molecular weights). Typically, a sample of a polymer is a mixture of structurally similar chains of different lengths and one can only refer to an average molecular weight for the entire distribution of molecules in the sample. Generally, two types of such averages, namely number‐average (M n in g/mol) and weight‐average (M W in g/mol), are used to express the molecular weights of plastics.

upper M Subscript n Baseline equals StartFraction sigma-summation upper N Subscript i Baseline upper M Subscript i Baseline Over sigma-summation upper N Subscript i Baseline EndFraction upper M Subscript w Baseline equals StartFraction sigma-summation upper N Subscript i Baseline upper M Subscript i Baseline squared Over sigma-summation upper N Subscript i Baseline upper M Subscript i Baseline EndFraction

      where N i is the number of chain molecules having a molecular weight, M i , and N is the total number of molecules in the sample (N = ∑N СКАЧАТЬ