The Digital Agricultural Revolution. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу The Digital Agricultural Revolution - Группа авторов страница 29

Название: The Digital Agricultural Revolution

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119823445

isbn:

СКАЧАТЬ a Southern California chaparral ecosystem. Remote Sens. Environ., 103, 3, 289–303, 2005.

      66. Peng, Z., Hu, M., Liu, Y., Application of RS and GIS Technique to Estimate Regional Water-saving Potentiality, 2007.

      67. Singh, R.K. and Prajneshu, Artificial Neural Network Methodology for Modelling and Forecasting Maize Crop Yield. Agric. Econ. Res. Rev., 21, 1, 152–156, 2008.

      69. Gowda, P.H., Jose, L., Paul, D.C., Steve, R.C., Terry, A.E., Judy, H., Tolk, A., ET mapping for agricultural water management: present status and challenges. Irrig. Sci., 26, 23–237, 2008.

      70. Wart, J.V., Kersebaum, K.C., Peng, S., Milner, M., Cassman., K.G., Estimating crop yield potential at regional to national scales. Field Crops Res., 143, 34–4, 2013.

      71. Sirisha, A., Raghuwanshi, N.S., Mishra, A., Tiwari, M.K., Evapotranspiration Modeling Using Second-Order Neural Networks. J. Hydrol. Eng., 19, 6, 1131–1140, 2014.

      72. Martí, P. and Gasque, M., Ancillary data supply strategies for improvement of temperature-based ETo ANN models. Agric. Water Manage., 97, 7, 939–955, 2010.

      73. Tabari, H., Marofi, S., Sabziparvar, A.A., Estimation of daily pan evaporation using artificial neural network and multivariate nonlinear regression. Irrig. Sci., 28, 5, 399–406, 2010.

      74. Kumar, M., Raghuwanshi, N.S., Singh, R., Wallender, W.W., Pruitt, W.O., Estimating evapotranspiration using artificial neural network. J. Irrig. Drain. Eng., 128, 4, 224–233, 2002.

      75. Uno, Y., Prasher, S.O., Lacroix, R., Goel, P.K., Karimi, Y., Viau, A., Artificial neural networks to predict corn yield from Compact Airborne Spectrographic Imager data. Comput. Electron. Agric., 47, 2, 149–161, 2005.

      76. Prasad, A.K., Chai, L., Ramesh, P.S., Kafatos, M., Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf., 8, 26–33, 2006.

      77. Simoes, M.D., Rocha, S.J.V., Lamparelli, R.A.C., Spectral variables, growth analysis and yield of sugarcane. Sci. Agric., 62, 3, 199–207, 2005.

      1 * Corresponding author: [email protected]

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7TCEUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAPcAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAoAQQBkAG8AYgBlACAA UABEAEYAAAAAAA9wcmludFByb29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAA AAAAAApwcm9vZlNldHVwAAAAAQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZD TVlLADhCSU0EOwAAAAACLQAAABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABD cHRuYm9vbAAAAAAAQ2xicmJvb2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jv b2wAAAAAAExibHNib29sAAAAAABOZ3R2Ym9vbAAAAAAARW1sRGJvb2wAAAAAAEludHJib29sAAAA AABCY2tnT2JqYwAAAAEAAAAAAABSR0JDAAAAAwAAAABSZCAgZG91YkBv4AAAAAAAAAAAAEdybiBk b3ViQG/gAAAAAAAAAAAAQmwgIGRvdWJAb+AAAAAAAAAAAABCcmRUVW50RiNSbHQAAAAAAAAAAAAA AABCbGQgVW50RiNSbHQAAAAAAAAAAAAAAABSc2x0VW50RiNQeGxAcsAAAAAAAAAAAAp2ZWN0b3JE YXRhYm9vbAEAAAAAUGdQc2VudW0AAAAAUGdQcwAAAABQZ1BDAAAAAExlZnRVbnRGI1JsdAAAAAAA AAAAAAAAAFRvcCBVbnRGI1JsdAAAAAAAAAAAAAAAAFNjbCBVbnRGI1ByY0BZAAAAAAAAAAAAEGNy b3BXaGVuUHJpbnRpbmdib29sAAAAAA5jcm9wUmVjdEJvdHRvbWxvbmcAAAAAAAAADGNyb3BSZWN0 TGVmdGxvbmcAAAAAAAAADWNyb3BSZWN0UmlnaHRsb25nAAAAAAAAAAtj
СКАЧАТЬ