Core Microbiome. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Core Microbiome - Группа авторов страница 30

Название: Core Microbiome

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Биология

Серия:

isbn: 9781119830771

isbn:

СКАЧАТЬ plant, Typhonium giganteum Engl. International Journal of Systematic and Evolutionary Microbiology 62 (Pt_5): 1081–1085.

      109 Yolcu, H., Gunes, A., Gullap, M.K., and Cakmakci, R. (2012). Effects of plant growth-promoting rhizobacteria on some morphologic characteristics, yield and quality contents of Hungarian vetch. Turkish Journal of Field Crops 17 (2): 208–214.

      110 Zhang, F., Yang, Y.L., He, W.L., Zhao, X., and Zhang, L.X. (2004). Effects of salinity on growth and compatible solutes of callus induced from Populus euphratica. In Vitro Cellular & Developmental Biology-Plant 40 (5): 491–494.

      111 Zhang, H.Y., Xue, Q.H., Shen, G.H., and Wang, D.S. (2013). Effects of actinomycetes agent on ginseng growth and rhizosphere soil microflora. Ying Yong Sheng Tai Xue Bao= the Journal of Applied Ecology 24 (8): 2287–2293.

      112 Zhang, L.-J., Liu, H.-K., Hsiao, P.-C., Kuo, L.-M.Y., Lee, I.-J., Tian-Shung, W., Chiou, W.-F., and Kuo, Y.-H. (2011). New isoflavonoid glycosides and related constituents from astragali radix (Astragalus membranaceus) and their inhibitory activity on nitric oxide production. Journal of Agricultural and Food Chemistry 59 (4): 1131–1137.

      113 Zhao, S., Ye, G., Fu, G., CHEnG, J.-X., YAnG, B.B., and PEnG, C. (2011). Ganoderma lucidum exerts anti-tumor effects on ovarian cancer cells and enhances their sensitivity to cisplatin. International Journal of Oncology 38 (5): 1319–1327.

      114 Zhou, K. and Raffoul, J.J. (2012). Potential anticancer properties of grape antioxidants. Journal of Oncology 2012.

      115 Zubek, S. and Błaszkowski, J. (2009). Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes. Phytochemistry Reviews 8 (3): 571–580.

       Aparna Gunjal

       Department of Microbiology, Dr. D.Y. Patil, Arts, Commerce and Science College, Pimpri, Pune, Maharashtra

      4.1 Introduction

      Landfill and incineration are the ways of solid waste treatment globally. Methane is the greenhouse gas that causes global warming and that needs to be minimized. Therefore, recycling wastes and organic material by returning to agricultural land is most effective. Composting is the most economical and effective way of recycling by placing organic material back in the soil to enhance soil properties (Awasthi et al. 2014). Landfill of biodegradable waste contributes to environmental degradation due to the production of methane gas (Hurrell 2015). A considerable amount of biodegradable organic waste is generated in most countries, and their management is problematic. Recycling wastes and organic material by returning to agricultural land is essential. Composting is the most cost-effective and promising method of treating wastes. Composting is a biological process that turns organic matter into a dark, rich, colored substance, termed “compost,” which is used as a good soil conditioner. Microbes convert complex organic substances into simpler substances during the composting process with the production of carbon dioxide, water, and minerals and stabilized organic matter called compost. During the composting process, heat is generated that kills pathogens, weeds, etc.

      4.2 Applications of Compost

      4.2.1 Compost Use for Soil Amendment and as Conditioner

      The role of organic amendments in agriculture is to provide minerals to the crops and improve soil properties. Many physicochemical changes in the soil are due to modifications that help minimize chemical fertilizers (Bonilla et al. 2012). Organic amendments include manure, crop and food residues, compost, and fertilizers. The compost helps maintain soil stability. This also promotes the balance within the agroecosystem. The composting process converts organic waste into a humus-like substance called compost, which can be used as a soil fertility booster (Li et al. 2013).

      Compost helps improve soil properties by minimizing bulk density and enhancing the permeability and stability of the soil. As a result, it also increases the water absorption capacity of the soil (Adugna 2016) and reduces soil abrasion (Martinez-Blanco et al. 2013). Compost improves drought resistance and soil physical properties (Adugna 2016), increases the availability of nutrients and microbial populations, and enhances crop yield (Chelah et al. 2011). Compost use in soil amendment increases surface water infiltration and reduces the intensity of surface run-off from land, and also reduces transport of dissolved and suspended phosphorus and nitrate–nitrogen. The addition of compost in agricultural soil is also known to significantly increase the organic material in the soil (Bellamy et al. 2005).

      Compost amendment to soil also helps delay surface degradation. Tong et al. (2018) have reported the reuse of wastes as compost for enhancing soil properties in the afforested land of Beijing plain.

      4.2.2 Compost to Alleviate Soil Compaction

      Soil compaction is a severe landscape management problem, as it slows turf establishment by stopping the movement of air, water, and minerals within the soil. The standard methods to alleviate soil compaction are costly and require human resources. Therefore, turf managers have been recommending the use of compost and compost mixed with bulking agents. The use of compost and compost with bulking agents helps in root penetration, and turf establishment enhances water-holding capacity and resistance to insects and pests.

      4.2.3 Control of Erosion by the Addition of Compost

      Goldstein (2002) suggested that soils amended with compost have indicated delays in surface degradation and decreases in sediment run-off.

      On steep embankments of roads and highways, compost is used to reduce soil erosion and establish turf, as compost forms a thick permanent growth to improve soil infrastructure. Turfgrasses are challenging to maintain and sensitive to turf diseases, pests, insects, and soil compaction. Turf managers were using chemical fertilizers, pesticides, fungicides, etc. or a combination of all three, which are rather harmful to the environment. However, turf managers now prefer to use compost for the remediation of turfgrasses.

СКАЧАТЬ