Название: Continuous Emission Monitoring
Автор: James A. Jahnke
Издательство: John Wiley & Sons Limited
Жанр: Биология
isbn: 9781119434023
isbn:
Extractive Systems
Extractive gas monitoring systems were the first to be developed for source measurements. In these systems, gas is extracted from a duct or stack and transported to analyzers to measure the pollutant concentrations. Many of the early extractive systems first diluted the gas using rotameters, and then applied ambient air analyzers for measurements. However, frequent problems occurred in maintaining stable dilution ratios, so analyzers were subsequently developed to directly measure the flue gas at source‐level concentrations in the range of 100–1000 ppm or higher. These source‐level extractive systems were quite successful and received their widest application in the 1970s and early 1980s.
Many of the problems associated with the earlier dilution systems have since been eliminated by new techniques developed in the 1980s. The advent of the “dilution probe” made dilution systems viable for source measurements. Dilution systems are now relatively easy to construct and exhibit good performance. They are particularly useful for monitoring water‐soluble gases and provide a platform for the application of a new generation of analyzers that are able to measure part per billion concentration levels.
In order for an instrument to measure gas concentrations, the gas sample must be free of particulate matter. Often, water vapor is removed and the sample is cooled to instrument temperature. This requires the use of valves, pumps, chillers, sample tubing, and other components necessary for gas transport and conditioning. “Hot‐wet” systems, which measure hot gases without water removal, operate continuously at elevated temperatures, eliminating the need for water removal systems. Extractive systems use an umbilical line to transport the flue gas sample from the stack or duct to an analyzer cabinet or temperature‐controlled shelter. This line is heated in source‐level systems where the conditioning system is located in the shelter.
Figure 1‐2 Types of monitoring systems.
Dilution‐extractive systems became popular in the 1990s for determining pollutant mass emission rates at U.S. coal‐fired power plants subject to acid rain cap‐and‐trade regulations. Dilution‐extractive CEM systems measure on a wet basis, an advantage when required to report emissions in units of tons/year or kg/hr. Dilution‐extractive systems are available where the sample dilution takes place in a specially designed in‐stack probe or, alternatively, in a probe box outside of the stack, where a variety of dilution techniques are available. In either case, when the flue gas sample is diluted at the stack, a heated umbilical line is not always needed to transport the diluted sample to a CEM shelter.
Close‐coupled systems are extractive systems where the sample conditioning and analysis are conducted directly on the stack. In these systems, the analyzer is connected directly to the sample probe. These systems avoid sample losses for “sticky” or reactive gases due to gas transport and also reduce system costs by not requiring an umbilical line.
In‐Situ Systems
In‐situ systems consist primarily of an analyzer that employs some type of sensor to measure the gas directly in the stack, or projects light through the stack to make measurements. The opacity monitor and flow monitor illustrated in Figure 1‐1 are typical examples of in‐situ analyzers. There are two classifications of in‐situ analyzers: point and path. Point analyzers consist of an electro‐optical or electroanalytical sensor mounted on the end of a probe that is inserted into the stack. The point in‐stack measurement is usually made by a sensor over a distance of only a few centimeters. Path analyzers, on the other hand, measure along a path across the width of the duct or diameter of the stack. In these “cross‐stack” gas analyzers, light is transmitted through the gas, and the interaction of the light with the flue gas is used to obtain a quantitative value of the pollutant concentrations. In single‐pass instruments, light is transmitted from a unit on one side of the stack to a detector on the other side, making only one pass through the stack. In a double‐pass system, light is reflected from a mirror on the opposite side, doubles back on itself, and is detected back at the “transceiver.”
In‐situ analyzers are used to measure the concentrations of pollutant and combustion gases and particulate matter, flue gas opacity, and flue gas velocity (flow). Both point and path techniques are used to monitor gas and particulate concentrations. Opacity monitors (transmissometers) are path monitors and can be either single‐pass or double‐pass systems, measuring the transmittance of visible light through the stack. Flow monitors are designed in either point or path configurations, depending upon the analytical technique.
Using wavelength‐tunable lasers, in‐situ gas monitoring systems are experiencing renewed popularity, particularly for the measurement of reactive gases such as HCl and NH3. More attention is being paid to verifying system calibration using NIST traceable calibration gases, an important issue in the United States. In‐situ point monitors using laser‐light scattering techniques have become popular for monitoring flue gas particulate matter concentrations. Light‐scattering particle sizing techniques are developing, but this technology has lagged behind in source monitoring applications for many years.
Remote Sensors
Remote sensing systems have no interface between the stack gases and the sensing instrument, other than the ambient atmosphere. They thus avoid problems associated with a stack or duct interface. These systems can detect emission concentrations merely by projecting light up to the stack (active systems) or by sensing the light radiating from the “hot” molecules emitted from the stack (passive systems). However, due to an inherent problem in defining the length of the measurement path in the plume, the accuracy of gas concentration data is poorer than that obtained by the extractive or in‐situ techniques. This problem is also an issue in making flue gas measurements using laser systems mounted on unmanned aerial vehicles (drones), a developing source monitoring technology.
The U.S. EPA has developed Method 9A for monitoring stack exit opacity, using a laser light detection and ranging technique (LIDAR). The method is particularly useful at night or under atmospheric conditions that are not favorable to a visible emissions observer (VEO) performing EPA test method 9. In a related development, a digital camera technique for measuring plume opacity has been standardized by ASTM in ASTM standard D7520‐16. Although not a continuous method, data using this method are being accepted by regulatory agencies for visible emissions compliance determinations.
Test methods and certification procedures have not been standardized for remote sensing systems used to monitor gaseous emissions. Since the regulatory applicability of remote pollutant gas measurements to stationary sources has not yet been established, these systems for source emissions monitoring are not extensively applied in commercial applications. They have, however, seen wider application in “fence‐line” monitoring, particularly at petroleum refineries and chemical plants. Attempts are frequently made to correlate emissions data with long‐path remote sensing data obtained along a plant perimeter. Such correlations typically devolve into research studies and have met with limited success as a regulatory tool.
Unmanned aerial vehicles (UAVs) (drones) offer significant potential in source monitoring applications (Villa et al. 2016). UAV systems can obtain grab sample for laboratory analysis, or, as part of an active remote system, incorporate a stationary mirror to reflect light projected from a ground‐based СКАЧАТЬ