Рефлексивные процессы и управление. Сборник материалов XI Международного симпозиума 16-17 октября 2017 г., Москва. Коллектив авторов
Чтение книги онлайн.

Читать онлайн книгу Рефлексивные процессы и управление. Сборник материалов XI Международного симпозиума 16-17 октября 2017 г., Москва - Коллектив авторов страница 20

СКАЧАТЬ рассматриваемые нами [1–3], характеризуются тем, что сначала делает выбор один из игроков, а второй игрок, чтобы не быть обреченным на поражение, должен разгадать выбор противника. Таковы, например, игра «нападение и оборона»[1], «игра в прятки»[4]. Изучение таких игр требует привлечения признаков распознавания стратегии противника. Данная задача требует привлечения теории рефлексивных игр [4].

      Необходимые определения и обозначения. Рассмотрим игру, задаваемую матрицами:

      где первая матрица есть матрица выигрышей игрока 𝒜, а вторая дает выигрыши игрока ℬ. Игрок 𝒜 выбирает строчку (𝑖 ∈ 1,2), игрок ℬ – столбец (𝑗 ∈ 1,2). После того как выбор сделан, игрок 𝒜 получает выигрыш 𝑎𝑖𝑗, а игрок ℬ – выигрыш 𝑏𝑖𝑗. Матрицы известны обоим игрокам. Данная игра является игрой с постоянной суммой 𝑎𝑖𝑗 + 𝑏𝑖𝑗 = 1, и ее равновесные смешанные стратегии одинаковы для обоих игроков . Здесь введены обозначения: 𝑥1, 𝑥2– вероятности с которыми игрок 𝒜 выбирает первую (𝐴1) или вторую (𝐴2) стратегию (первую или вторую строчку матрицы 𝐴); аналогично (𝑦1𝑦2) – распределение вероятностей на стратегиях 𝐵1,𝐵2 (столбцах матрицы 𝐵). Математическое ожидание выигрыша для игрока 𝒜 равно 0.5. Дополним описание данной игры допущением, что для каждой стратегии игроков известны признаки распознавания, известные обоим. Кроме того, для каждого такого признака существуют косвенные признаки, некоторые из которых носят рефлексивный характер. Будем считать, что скрытие косвенных признаков невозможно.

      Приведем определения для признаков распознавания. Введем обобщенное обозначение S для некоторой стратегии игрока.

      Признак α называется необходимым признаком для распознавания стратегии, если он принимает значение истина всякий раз, когда реализуется распознаваемая стратегия. В символах математической логики это отображается импликацией Sа и правилом вывода (распознавания) S,S → α/α: если противник выбрал стратегию S, то должен наблюдаться признак α.

      Признак β называется достаточным признаком для распознавания стратегии, если из факта наблюдения признака β(логическая формула признака приняла значение истина) следует выбор стратегии S. В символах математической логики это отображается импликацией βS и правилом вывода (распознавания) β/βS/S: если наблюдается признак β, то противник выбрал стратегию S.

      Признак γ является необходимым и достаточным для распознавания стратегии S, если утверждения γ и S одновременно истинны или одновременно ложны. С прикладной точки зрения наблюдение признака γ позволяет делать безошибочный прогноз о выборе противника.

      Из факта наблюдения признака α не следует достоверное заключение о выборе стратегии. Следует лишь возможность реализации распознаваемой стратегии S, поскольку множество истинности признака а шире, чем множество истинности необходимого и достаточного признака у. Однако, из факта ложности признака α (наблюдается ā) следует, что стратегия S не будет реализована. Действительно, это следует из закона логики (S → а) → (а S). Из факта отсутствия признака β не следует, что стратегия СКАЧАТЬ