DNA Origami. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу DNA Origami - Группа авторов страница 23

Название: DNA Origami

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9781119682585

isbn:

СКАЧАТЬ Nature Chemistry 3: 620–627.

      20 20 Rajendran, A., Endo, M., Katsuda, Y. et al. (2011). Programmed two‐dimensional self‐assembly of multiple DNA origami jigsaw pieces. ACS Nano 5: 665–671.

      21 21 Zhao, Z., Liu, Y., and Yan, H. (2011). Organizing DNA origami tiles into larger structures using preformed scaffold frames. Nano Letters 11: 2997–3002.

      22 22 Liu, W., Zhong, H., Wang, R., and Seeman, N.C. (2011). Crystalline two‐dimensional DNA‐origami arrays. Angewandte Chemie International Edition 50: 264–267.

      23 23 Suzuki, Y., Endo, M., and Sugiyama, H. (2015). Lipid‐bilayer‐assisted two‐dimensional self‐assembly of DNA origami nanostructures. Nature Communications 6: 8052.

      24 24 Endo, M., Sugita, T., Rajendran, A. et al. (2011). Two‐dimensional DNA origami assemblies using a four‐way connector. Chemical Communications 47: 3213–3215.

      25 25 Douglas, S.M., Dietz, H., Liedl, T. et al. (2009a). Self‐assembly of DNA into nanoscale three‐dimensional shapes. Nature 459: 414–418.

      26 26 Andersen, E.S., Dong, M., Nielsen, M.M. et al. (2009). Self‐assembly of a nanoscale DNA box with a controllable lid. Nature 459: 73–76.

      27 27 Han, D., Pal, S., Nangreave, J. et al. (2011). DNA origami with complex curvatures in three‐dimensional space. Science 332: 342–346.

      28 28 Douglas, S.M., Marblestone, A.H., Teerapittayanon, S. et al. (2009b). Rapid prototyping of 3D DNA‐origami shapes with caDNAno. Nucleic Acids Research 37: 5001–5006.

      29 29 Dietz, H., Douglas, S.M., and Shih, W.M. (2009). Folding DNA into twisted and curved nanoscale shapes. Science 325: 725–730.

      30 30 Kuzuya, A. and Komiyama, M. (2009). Design and construction of a box‐shaped 3D‐DNA origami. Chemical Communications 4182–4184.

      31 31 Endo, M., Hidaka, K., and Sugiyama, H. (2011). Direct AFM observation of an opening event of a DNA cuboid constructed via a prism structure. Organic & Biomolecular Chemistry 9: 2075–2077.

      32 32 Ke, Y., Sharma, J., Liu, M. et al. (2009). Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Letters 9: 2445–2447.

      33 33 Endo, M., Hidaka, K., Kato, T. et al. (2009). DNA prism structures constructed by folding of multiple rectangular arms. Journal of American Chemical Society 131: 15570–15571.

      34 34 Sharma, J., Chhabra, R., Andersen, C.S. et al. (2008). Toward reliable gold nanoparticle patterning on self‐assembled DNA nanoscaffold. Journal of the American Chemical Society 130: 7820–7821.

      35 35 Ding, B., Deng, Z., Yan, H. et al. (2010). Gold nanoparticle self‐similar chain structure organized by DNA origami. Journal of the American Chemical Society 132: 3248–3249.

      36 36 Sacca, B., Meyer, R., Erkelenz, M. et al. (2010). Orthogonal protein decoration of DNA origami. Angewandte Chemie International Edition 49: 9378–9383.

      37 37 Fu, J., Liu, M., Liu, Y. et al. (2012). Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. Journal of the American Chemical Society 134: 5516–5519.

      38 38 Stein, I.H., Steinhauer, C., and Tinnefeld, P. (2011). Single‐molecule four‐color FRET visualizes energy‐transfer paths on DNA origami. Journal of American Chemical Society 133: 4193–4195.

      39 39 Chhabra, R., Sharma, J., Ke, Y. et al. (2007). Spatially addressable multiprotein nanoarrays templated by aptamer‐tagged DNA nanoarchitectures. Journal of American Chemical Society 129: 10304–10305.

      40 40 Shen, W., Zhong, H., Neff, D., and Norton, M.L. (2009). NTA directed protein nanopatterning on DNA Origami nanoconstructs. Journal American Chemical Society 131: 6660–6661.

      41 41 Rinker, S., Ke, Y., Liu, Y. et al. (2008). Self‐assembled DNA nanostructures for distance‐dependent multivalent ligand‐protein binding. Nature Nanotechnology 3: 418–422.

      42 42 Kuzuya, A., Kimura, M., Numajiri, K. et al. (2009). Precisely programmed and robust 2D streptavidin nanoarrays by using periodical nanometer‐scale wells embedded in DNA origami assembly. Chembiochem: A European Journal of Chemical Biology 10: 1811–1815.

      43 43 Mandell, J.G. and Barbas, C.F. 3rd. (2006). Zinc finger tools: custom DNA‐binding domains for transcription factors and nucleases. Nucleic Acids Research 34: W516–W523.

      44 44 Sander, J.D., Zaback, P., Joung, J.K. et al. (2007). Zinc finger targeter (ZiFiT): an engineered zinc finger/target site design tool. Nucleic Acids Research 35: W599–W605.

      45 45 Nakata, E., Liew, F.F., Uwatoko, C. et al. (2012). Zinc‐finger proteins for site‐specific protein positioning on DNA‐origami structures. Angewandte Chemie 51: 2421–2424.

      46 46 Bando, T. and Sugiyama, H. (2006). Synthesis and biological properties of sequence‐specific DNA‐alkylating pyrrole‐imidazole polyamides. Accounts of Chemical Research 39: 935–944.

      47 47 Yoshidome, T., Endo, M., Kashiwazaki, G. et al. (2012). Sequence‐selective single‐molecule alkylation with a pyrrole‐imidazole polyamide visualized in a DNA nanoscaffold. Journal of the American Chemical Society 134: 4654–4660.

      48 48 Ke, Y., Lindsay, S., Chang, Y. et al. (2008). Self‐assembled water‐soluble nucleic acid probe tiles for label‐free RNA hybridization assays. Science 319: 180–183.

      49 49 Voigt, N.V., Torring, T., Rotaru, A. et al. (2010). Single‐molecule chemical reactions on DNA origami. Nature Nanotechnology 5: 200–203.

      50 50 Kuzuya, A., Sakai, Y., Yamazaki, T. et al. (2011). Nanomechanical DNA origami 'single‐molecule beacons' directly imaged by atomic force microscopy. Nature Communications 2: 449.

      51 51 Koirala, D., Shrestha, P., Emura, T. et al. (2014). Single‐molecule mechanochemical sensing using DNA origami nanostructures. Angewandte Chemie International Edition 53: 8137–8141.

      52 52 Endo, M., Yang, Y., and Sugiyama, H. (2013). DNA origami technology for biomaterials applications. Biomaterials Science 1: 347–360.

      53 53 Ando, T., Kodera, N., Takai, E. et al. (2001). A high‐speed atomic force microscope for studying biological macromolecules. Proceedings of the National Academy of Sciences of the United States of America 98: 12468–12472.

      54 54 Ando, T. and Kodera, N. (2012). Visualization of mobility by atomic force microscopy. Methods in Molecular Biology 896: 57–69.

      55 55 Uchihashi, T., Kodera, N., and Ando, T. (2012). Guide to video recording of structure dynamics and dynamic processes of proteins by high‐speed atomic force microscopy. Nature Protocols 7: 1193–1206.

      56 56 Rajendran, A., Endo, M., and Sugiyama, H. (2014). State‐of‐the‐art high‐speed atomic force microscopy for investigation of single‐molecular dynamics of proteins. Chemical Reviews 114: 1493–1520.

      57 57 Walters, D.A., Cleveland, J.P., Thomson, N.H. et al. (1996). Short cantilevers for atomic force microscopy. Review of Scientific Instruments 67: 3583–3590.

      58 58 Schitter, G., Astrom, K.J., DeMartini, B.E. et al. (2007). Design and modeling of a high‐speed AFM‐scanner. IEEE Transactions of Control Systems Technology 15: 906–915.

      59 59 Sannohe, Y., Endo, M., Katsuda, Y. et al. (2010). Visualization СКАЧАТЬ