DNA Origami. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу DNA Origami - Группа авторов страница 12

Название: DNA Origami

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9781119682585

isbn:

СКАЧАТЬ first DNA building block, the double‐crossover (DX) motif, is one of the most essential and important inventions in DNA nanotechnology [7]. In the DX motif, two double‐stranded DNAs (dsDNA) are connected at two crossover points in parallel and antiparallel arrangements, which reduces the flexibility of the single dsDNA (Figure 1.2c). The two crossover points are separated by a defined number of base pairs. Using these DX tiles as building blocks, large nanostructures can be constructed via hybridization of the four sticky ends introduced to the DX tiles, which directs the self‐assembly into 2D nanostructures [10]. By using this strategy, 2D building blocks have been further developed for the preparation of various 2D tiles, such as triple‐crossover [11], triangular [12, 13], and 4 × 4 tiles [14]. This concept has also been extended to double‐helix bundled building blocks designed for the construction of tubular structures [15]. All the structures were constructed by simply using defined numbers of unmodified DNA strands. For further extension of the nanostructures, a more complicated design of the building blocks and sequences with larger numbers of DNA strands are needed.

      In addition, mechanical DNA nanomachines with a controllable molecular system were developed. An extra sequence called a “toehold” is attached to the end of the DNA strand. Using this toehold, the DNA molecular machines are operated by adding and removing specific DNA strands for complex movements. When a DNA strand fully complementary to a toehold‐containing DNA is added, the initial complementary strand without the toehold is selectively removed by strand displacement [16]. The thermodynamic stabilization energy for hybridization works as “fuel” to provide the mechanical motion of the DNA molecular machine. Using this strategy, DNA tweezers that perform open–close motions were constructed (Figure 1.2d) [8]. Seeman and coworkers created a molecular machine combining DNA nanostructures. Using the helical rotation of dsDNA during the B–Z transition, in which the dsDNA conformation changes from a right‐handed (B‐form DNA) to a left‐handed (Z‐form DNA) conformation, a reciprocating motion of the DNA nanostructure was observed [17]. In addition, they developed molecular machines that perform 180° rotation at the ends of two adjacent dsDNAs, called PX‐JX2 devices, by hybridization and removal of DNA strands (Figure 1.2e) [9]. Both the PX and JX2 states were directly observed by atomic force microscopy (AFM). These dynamic systems were also introduced to DNA origami to operate DNA nanodevices (see Section 1.9).

Schematic illustration of DNA nanotechnology before the emergence of DNA origami.

      Source: Modified from Seeman [1].

      (c) Double crossover structure, in which two dsDNAs are connected by four‐way branched strands (crossover; arrows). Two‐dimensional periodic structure was formed by self‐assembly using two double‐crossover components (A‐tile and B‐tile* with hairpin) with sticky ends (complementary single‐stranded DNAs at the ends). AFM image of the self‐assembled 2D nanostructure.

      Source: Modified from Winfree et al. [10]

      (d) Dynamic open/close behavior of DNA tweezers operated by strand displacement using toehold containing DNA strands.

      Source: Modified from Yurke et al. [8].

      (e) PX‐JX2 device to exchange the bottom part of by insertion and removal of the strands. The structures can be observed in AFM images.

      Source: Yan et al. [9]/with permission of Springer Nature.

Schematic illustration of DNA origami.

      Source: Rothemund [6]/with permission of Springer Nature.

      The programmed arrangement of multiple DNA origami structures is an important technique for preparing larger structures, particularly in terms of integrating complex functions. We explored techniques for arranging multiple DNA origami components and developed methods to arrange rectangular DNA origami tiles horizontally in a programmed fashion [18]. Because the ends of the helical axes align at both edges of the DNA origami rectangles, origami tiles horizontally assemble via π‐interactions at the edges in a predictable fashion [18]. Specific concave and convex connectors were introduced into DNA origami tiles to precisely align neighboring tiles in a shape‐fitting manner. DNA tiles could be correctly СКАЧАТЬ